首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phospholipid transfer protein (PLTP) plays an important role in plasma lipoprotein metabolism. However, PLTP is expressed in a wide range of tissues suggesting additional local functions. To analyze the tissue distribution of PLTP in an animal with high-level expression of the structurally and functionally related CETP, we have cloned the full-length cDNA of rabbit PLTP (1,796 bp). Rabbit PLTP cDNA shows high homology to human, murine, and porcine PLTP cDNA, averaging 86.1%, 80.4%, and 86.1%, respectively. Interestingly, the C-terminus contains a unique seven amino acid insertion not found in previously characterized mammalian PLTPs. In clear contradistinction to human PLTP, rabbit PLTP mRNA was prominent in brain. In situ hybridization studies revealed specific, high-level synthesis of PLTP mRNA in choroid plexus and ependyma, the organs responsible for production of cerebrospinal fluid. Consistent with these findings, PLTP activity in cerebrospinal fluid amounted to 23% +/- 3% of that in rabbit plasma. In contrast, neither CETP mRNA nor CETP activity were detectable in rabbit brain.A role of PLTP in the central nervous system could involve some of its actions previously established in vitro, like proteolysis of apolipoproteins, and be physiologically relevant for neurodegenerative disorders such as Alzheimer's disease.  相似文献   

2.
3.
4.
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. PLTP is an 80-kDa glycoprotein that is expressed/secreted by a wide variety of tissues including lung, liver, adipose tissue, brain, and muscle. PLTP mediates a net transfer of phospholipids between vesicles and plasma HDLs. It also generates from small HDL particles large fused HDL particles with a concomitant formation of small lipid-poor apolipoprotein (apo) A-I-containing particles which are thought to act as the primary acceptors of cell-derived cholesterol from peripheral tissue macrophages. Another important function of PLTP is connected to lipolysis. Its role in the transfer of surface remnants from triglyceride-rich particles, very-low-density lipoproteins, and chylomicrons, to HDL is of importance for the maintenance of HDL levels. Recent observations from our laboratory have demonstrated that in circulation two forms of PLTP are present, one catalytically active (high-activity form, HA-PLTP) and the other a low-activity form (LA-PLTP). In view of the likely relevancy of PLTP in human health and disease, reliable and accurate methods for measuring plasma/serum PLTP activity and concentration are required. In this chapter, two radiometric PLTP activity assays are described: (i) exogenous, lipoprotein-independent phospholipid transfer assay and (ii) endogenous, lipoprotein-dependent phospholipid transfer assay. In addition, an ELISA method for quantitation of serum/plasma total PLTP mass as well as HA-PLTP and LA-PLTP mass is reported in detail.  相似文献   

5.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

6.
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease.PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

7.
Plasma phospholipid transfer protein (PLTP) is a multifaceted protein with diverse biological functions. It has been shown to exist in both active and inactive forms. To determine the nature of lipoproteins associated with active PLTP, plasma samples were adsorbed with anti-A-I, anti-A-II, or anti-E immunoadsorbent, and PLTP activity was measured in the resulting plasma devoid of apolipoprotein A-I (apoA-I), apoA-II, or apoE. Anti-A-I and anti-A-II immunoadsorbents removed 98 +/- 1% (n = 8) and 38 +/- 25% (n = 7) of plasma PLTP activity, respectively. In contrast, only 1 +/- 5% of plasma PLTP activity was removed by anti-E immunoadsorbent (n = 7). Dextran sulfate (DS) cellulose did not bind apoA-I, but it removed 83 +/- 5% (n = 4) of the PLTP activity in plasma. In size-exclusion chromatography, PLTP activity removed by anti-A-I or anti-A-II immunoadsorbent was associated primarily with particles of a size corresponding to HDL, whereas a substantial portion of the PLTP activity dissociated from DS cellulose was found in particles larger or smaller than HDL. These data show the following: 1) active plasma PLTP is associated primarily with apoA-I- but not apoE-containing lipoproteins; 2) active PLTP is present in HDL particles with and without apoA-II, and its distribution between these two HDL subpopulations varies widely among individuals; and 3) DS cellulose can remove active PLTP from apoA-I-containing lipoproteins, and this process creates new active PLTP-containing particles in vitro.  相似文献   

8.
Human phospholipid transfer protein (PLTP) mediates the transfer of phospholipids among atheroprotective high-density lipoproteins (HDL) and atherogenic low-density lipoproteins (LDL) by an unknown mechanism. Delineating this mechanism would represent the first step towards understanding PLTP-mediated lipid transfers, which may be important for treating lipoprotein abnormalities and cardiovascular disease. Here, using various electron microscopy techniques, PLTP is revealed to have a banana-shaped structure similar to cholesteryl ester transfer protein (CETP). We provide evidence that PLTP penetrates into the HDL and LDL surfaces, respectively, and then forms a ternary complex with HDL and LDL. Insights into the interaction of PLTP with lipoproteins at the molecular level provide a basis to understand the PLTP-dependent lipid transfer mechanisms for dyslipidemia treatment.  相似文献   

9.
Phospholipid lipid transfer protein (PLTP) mimics high-density lipoprotein apolipoproteins in removing cholesterol and phospholipids from cells through the ATP-binding cassette transporter A1 (ABCA1). Because amphipathic alpha-helices are the structural determinants for ABCA1 interactions, we examined the ability of synthetic peptides corresponding to helices in PLTP to remove cellular cholesterol by the ABCA1 pathway. Of the seven helices tested, only one containing PLTP residues 144-163 (p144), located at the tip of the N-terminal barrel, promoted ABCA1-dependent cholesterol efflux and stabilized ABCA1 protein. Mutating methionine 159 (Met-159) in this helix in PLTP to aspartate (M159D) or glutamate (M159E) nearly abolished the ability of PLTP to remove cellular cholesterol and dramatically reduced PLTP binding to phospholipid vesicles and its phospholipid transfer activity. These mutations impaired PLTP binding to ABCA1-generated lipid domains and PLTP-mediated stabilization of ABCA1 but increased PLTP binding to ABCA1. PLTP interactions with ABCA1 also mimicked apolipoproteins in activating Janus kinase 2; however, the M159D/E mutants were also able to activate this kinase. Structural analyses showed that the M159D/E mutations had only minor effects on PLTP conformation. These findings indicate that PLTP helix 144-163 is critical for removing lipid domains formed by ABCA1, stabilizing ABCA1 protein, interacting with phospholipids, and promoting phospholipid transfer. Direct interactions with ABCA1 and activation of signaling pathways likely involve other structural determinants of PLTP.  相似文献   

10.
Ponsin G  Qu SJ  Fan HZ  Pownall HJ 《Biochemistry》2003,42(15):4444-4451
Human plasma phospholipid transfer protein (PLTP) exchanges phospholipids between lipoproteins and remodels high-density lipoproteins (HDLs). We determined phospholipid transfer activity and HDL binding ability in wild-type PLTP and in 16 PLTP variants created by replacing 12 charged amino acids by site-directed mutagenesis. The data were analyzed in relation to the structure of a member of the same gene family, bactericidal/permeability-increasing protein, which is a boomerang-shaped molecule containing two symmetrical, hydrophobic pockets that bind phospholipid molecules. When expressed in COS-7 cells, wild-type and all mutant PLTPs accumulated intracellularly to nearly the same extent. Relative to wild-type PLTP, substitution(s) for amino acids with a lateral position totally exposed to the solvent produced reductions in transfer activity proportional to the reductions in the level of HDL binding. Variants containing substitutions for charged amino acids on the concave surface of PLTP did not affect binding to HDL or specific transfer activity. A mutation in the C-terminal pocket (E270R) led to a decrease in both the specific transfer activity and the level of binding to HDLs, whereas mutations in the N-terminal pocket (R25E and D231R) resulted in a large decrease in specific transfer activity without affecting HDL binding. The data support a model of transfer in which N- and C-terminal pockets have different roles in HDL binding and transfer activity. The N-terminal pocket may be critical to PLTP transfer activity but may have no involvement in binding to lipoproteins, whereas amino acid substitutions in the C-terminal pocket might reduce PLTP activity by decreasing PLTP's affinity for HDLs.  相似文献   

11.
Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion   总被引:2,自引:0,他引:2  
Phospholipid transfer protein (PLTP) is an important regulator of high-density lipoprotein (HDL) metabolism. The two main functions of PLTP are transfer of phospholipids between lipoprotein particles and modulation of HDL size and composition in a process called HDL conversion. These PLTP-mediated processes are physiologically important in the transfer of surface remnants from lipolyzed triglyceride-rich lipoproteins to nascent HDL particles and in the generation of prebeta-HDL, the initial acceptor of excess peripheral cell cholesterol. The aim of the study presented here was to investigate the interrelationship between the two functions of PLTP. Plasma PLTP was chemically modified using diethylpyrocarbonate or ethylmercurithiosalicylate. The modified proteins displayed a dose-dependent decrease in phospholipid transfer activity and a parallel decrease in the ability to cause HDL conversion. Two recombinant PLTP mutant proteins, defective in phospholipid transfer activity due to a mutation in the N-terminal lipid-binding pocket, were produced, isolated, and incubated together with radioactively labeled HDL(3). HDL conversion was analyzed using three methods: native gradient gel electrophoresis, ultracentrifugation, and crossed immunoelectrophoresis. The results demonstrate that the mutant proteins (i) are able to induce only a modest increase in HDL particle size compared to the wild-type protein, (ii) are unable to release apoA-I from HDL(3), and (iii) do not generate prebeta-mobile particles following incubation with HDL(3). These data suggest that phospholipid transfer is a prerequisite for HDL conversion and demonstrate the close interrelationship between the two main activities of PLTP.  相似文献   

12.
One main determinant in high-density lipoprotein (HDL) metabolism is phospholipid transfer protein (PLTP), a plasma protein that is associated with HDL. In transgenic mice overexpressing human PLTP we found that elevated plasma PLTP levels dose-dependently increased the susceptibility to diet-induced atherosclerosis. This could be mainly due to the fact that most functions of PLTP are potentially atherogenic, such as decreasing plasma HDL levels. To further elucidate the role of PLTP in lipoprotein metabolism and atherosclerosis we generated a novel transgenic mouse model that allows conditional expression of human PLTP. In this mouse model a human PLTP encoding sequence is controlled by a Tet-On system. Upon induction of PLTP expression, our mouse model showed a strongly increased PLTP activity (from 3.0 ± 0.6 to 11.4 ± 2.8 AU, p < 0.001). The increase in PLTP activity resulted in an acute decrease in plasma cholesterol of 33% and a comparable decrease in phospholipids. The decrease in total plasma cholesterol and phospholipids was caused by a 35% decrease in HDL-cholesterol level and a 41% decrease in HDL-phospholipid level. These results demonstrate the feasibility of our mouse model to induce an acute elevation of PLTP activity, which is easily reversible. As a direct consequence of an increase in PLTP activity, HDL-cholesterol and HDL-phospholipid levels strongly decrease. Using this mouse model, it will be possible to study the effects of acute elevation of PLTP activity on lipoprotein metabolism and pre-existing atherosclerosis.  相似文献   

13.
Plasma phospholipid transfer protein (PLTP) is one of the key proteins in lipid and lipoprotein metabolism. We examined PLTP distribution in human brain using PLTP mRNA dot-blot, Northern blot, immunohistochemistry (IHC), Western blot, and phospholipid transfer activity assay analyses. PLTP mRNA of 1.8 kb was widely distributed in all the examined regions of the central nervous system at either comparable or slightly lower levels than in the other major organs, depending on the region. Cerebrospinal fluid phospholipid transfer activity represented 15% of the plasma activity, indicating active PLTP synthesis in the brain. Western blot and phosholipid transfer activity assay demonstrated secretion of active PLTP by neurons, microglia, and astrocytes in culture. IHC demonstrated PLTP presence in neurons, astrocytes, microglia, and oligodendroglia. Some neuronal groups, such as nucleus hypoglossus and CA2 neurons in hippocampus, ependymal layer, and choroid plexus were particularly strongly stained, with substantial glial and neuropil immunostaining throughout the brain. Comparison between brain tissues from patients with Alzheimer's disease (AD) and nonAD subjects revealed a significant increase (P = 0.02) in PLTP levels in brain tissue homogenates and increased PLTP immunostaining in AD.  相似文献   

14.
Increased secretion and levels of ApoB-containing lipoproteins (BLp) commonly occur in familial hyperlipidemia, obesity and diabetes. The plasma phospholipid-transfer protein (PLTP) is known to mediate transfer of phospholipids between BLp and HDL during their intravascular metabolism. To address a possible role of PLTP in dyslipidemia and atherogenesis, we bred mice deficient in the gene encoding PLTP (PLTP-deficient mice) using different hyperlipidemic mouse strains. In ApoB-transgenic and ApoE-deficient backgrounds, PLTP deficiency resulted in reduced production and levels of BLp and markedly decreased atherosclerosis. BLp secretion was diminished in hepatocytes from ApoB-transgenic PLTP-deficient mice, a defect that was corrected when PLTP was reintroduced in adenovirus. The studies reveal a major, unexpected role of PLTP in regulating the secretion of BLp and identify PLTP as a therapeutic target.  相似文献   

15.
Phospholipid lipid transfer protein (PLTP) is ubiquitously expressed in animal tissues and plays multiple roles in lipoprotein metabolism, but the function of peripheral PLTP is still poorly understood. Here we show that one of its possible functions is to transport cholesterol and phospholipids from cells to lipoprotein particles by a process involving PLTP interactions with cellular ATP-binding cassette transporter A1 (ABCA1). When ABCA1 was induced in murine macrophages or ABCA1-transfected baby hamster kidney cells, PLTP gained the ability to promote cholesterol and phospholipid efflux from cells. Although PLTP alone had lipid efflux activity, its maximum activity was observed in the presence of high density lipoprotein particles. Pulsechase studies showed that the interaction of PLTP with ABCA1-expressing cells played a role in promoting lipid efflux. Overexpression of ABCA1 dramatically increased binding of both PLTP and apoA-I to common sites on the cell surface. Both PLTP and apoA-I were covalently cross-linked to ABCA1, each protein blocked cross-linking of the other, and both PLTP and apoA-I stabilized ABCA1 protein. These results are consistent with PLTP and apoA-I binding to ABCA1 at the same or closely related sites. Thus, PLTP mimics apolipoproteins in removing cellular lipids by the ABCA1 pathway, except that PLTP acts more as an intermediary in the transfer of cellular lipids to lipoprotein particles.  相似文献   

16.
Circulatory phospholipid transfer protein (PLTP) has two major functions: 1) transfer of phospholipids towards HDL particles; and 2) modulation of HDL size and composition via the HDL conversion process. In the laying hen (Gallus gallus), the massive oocyte-targeted lipid flow is achieved through the concerted actions of lipases, lipid transfer proteins, and relatives of the LDL receptor family. The aim of the study was to gain insights into the structure and functions of chicken PLTP. The results demonstrate that PLTP is highly conserved from chicken to mammals, as (i) chicken PLTP is associated with plasma HDL; (ii) it clearly possesses phospholipid transfer activity; (iii) it is inactivated at + 58 °C; and (iv) it mediates conversion of avian and human HDL into small preβ-mobile HDL and large fused α-mobile HDL particles. Our data show that HDL from different chicken models is similar in chemical and physical properties to that of man based on PLTP activity, cholesterol efflux, and HDL conversion assays. In contrast to mammals, PLTP-facilitated HDL remodeling did not enhance cholesterol efflux efficiency of chicken HDL particles.  相似文献   

17.
Phospholipid transfer protein (PLTP) transfers phospholipids between HDL and other lipoproteins in plasma. It also remodels spherical, apolipoprotein A-I (apoA-I)-containing HDL into large and small particles in a process involving the dissociation of lipid-free/lipid-poor apoA-I. ApoE is another apolipoprotein that is mostly associated with large, spherical HDL that do not contain apoA-I. Three isoforms of apoE have been identified in human plasma: apoE2, apoE3, and apoE4. This study investigates the remodeling of spherical apoE-containing HDL by PLTP and the ability of PLTP to transfer phospholipids between apoE-containing HDL and phospholipid vesicles. Spherical reconstituted high density lipoproteins (rHDL) containing apoA-I [(A-I)rHDL], apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein were prepared by incubating discoidal rHDL with low density lipoproteins and lecithin:cholesterol acyltransferase. PLTP remodeled the spherical, apoE-containing rHDL into large and small particles without the dissociation of apoE. The PLTP-mediated remodeling of apoE-containing rHDL was more extensive than that of (A-I)rHDL. PLTP transferred phospholipids from small unilamellar vesicles to apoE-containing rHDL in an isoform-dependent manner, but at a rate slower than that for spherical (A-I)rHDL. It is concluded that apoE enhances the capacity of PLTP to remodel HDL but reduces the ability of HDL to participate in PLTP-mediated phospholipid transfers.  相似文献   

18.
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids from triglyceride-rich lipoproteins into HDL. PLTP has been shown to be an important factor in lipoprotein metabolism and atherogenesis. Here, we report that chronic high-fat, high-cholesterol diet feeding markedly increased plasma cholesterol levels in C57BL/6 mice. PLTP deficiency attenuated diet-induced hypercholesterolemia by dramatically reducing apolipoprotein E-rich lipoproteins (-88%) and, to a lesser extent, LDL (-40%) and HDL (-35%). Increased biliary cholesterol secretion, indicated by increased hepatic ABCG5/ABCG8 gene expression, and decreased intestinal cholesterol absorption may contribute to the lower plasma cholesterol in PLTP-deficient mice. The expression of proinflammatory genes (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) is reduced in aorta of PLTP knockout mice compared with wild-type mice fed either a chow or a high-cholesterol diet. Furthermore, plasma interleukin-6 levels are significantly lower in PLTP-deficient mice, indicating reduced systemic inflammation. These data suggest that PLTP appears to play a proatherogenic role in diet-induced hyperlipidemic mice.  相似文献   

19.
Plasma phospholipid transfer protein (PLTP) interacts with HDL particles and facilitates the transfer of phospholipids from triglyceride (TG)-rich lipoproteins to HDL. Overexpressing human PLTP in mice increases the susceptibility to atherosclerosis. In human plasma, high-active and low-active forms of PLTP exist. To elucidate the contribution of phospholipid transfer activity to changes in lipoprotein metabolism and atherogenesis, we developed mice expressing mutant PLTP, still able to associate with HDL but lacking phospholipid transfer activity. In mice heterozygous for the LDL receptor, effects of the mutant and normal human PLTP transgene (mutPLTP tg and PLTP tg, respectively) were compared. In PLTP tg mice, plasma PLTP activity was increased 2.9-fold, resulting in markedly reduced HDL lipid levels. In contrast, in mutPLTP tg mice, lipid levels were not different from controls. Furthermore, hepatic VLDL-TG secretion was stimulated in PLTP tg mice, but not in mutPLTP tg mice. When mice were fed a cholesterol-enriched diet, atherosclerotic lesion size in PLTP tg mice was increased more than 2-fold compared with control mice, whereas in mutPLTP tg mice, there was no change. Our findings demonstrate that PLTP transfer activity is essential for the development of atherosclerosis in PLTP transgenic mice, identifying PLTP activity as a possible target to prevent atherogenesis, independent of plasma PLTP concentration.  相似文献   

20.
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids among lipoproteins. Over half of the PLTP in human plasma has been found to have little phospholipid transfer activity (inactive PLTP). We recently observed that plasma PLTP specific activity is inversely correlated with high-density lipoprotein (HDL) level and particle size in healthy adults. The purpose of this study was to evaluate the factors that contribute to the variation in plasma PLTP specific activity. Analysis of the specific activity of PLTP complexes in nine plasma samples from healthy adults revealed two clusters of inactive PLTP complexes with mean molecular weights (MW) of 342kDa and 146kDa. The large and small inactive PLTP complexes represented 52±8% (range 39-63%) and 8±8% (range 1-28%) of the plasma PLTP, respectively. Active PLTP complexes had a mean MW of 207kDa and constituted 40±6% (range 33-50%) of the plasma PLTP. The specific activity of active PLTP varied from 16 to 32μmol/μg/h. These data demonstrate for the first time the existence of small inactive plasma PLTP complexes. Variation in the amount of the two clusters of inactive PLTP complexes and the specific activity of the active PLTP contribute to the variation in plasma PLTP specific activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号