共查询到12条相似文献,搜索用时 0 毫秒
1.
Based on current climate scenarios, a higher frequency of summer drought periods followed by heavy rainfall events is predicted for Central Europe. It is expected that drying/rewetting events induce an increased matter cycling in soils and may contribute considerably to increased emissions of the greenhouse gas N2O on annual scales. To investigate the influence of drying/rewetting events on N2O emissions in a mature Norway spruce forest in the Fichtelgebirge area (NE Bavaria, Germany), a summer drought period of 46 days was induced by roof installations on triplicate plots, followed by a rewetting event of 66 mm experimental rainfall in 2 days. Three nonmanipulated plots served as controls. The experimentally induced soil drought was accompanied by a natural drought. During the drought period, the soil of both the throughfall exclusion and control plots served as an N2O sink. This was accompanied by subambient N2O concentrations in upper soil horizons. The sink strength of the throughfall exclusion plots was doubled compared with the control plots. We conclude that the soil water status together with the soil nitrate availability was an important driving factor for the N2O sink strength. Rewetting quickly turned the soil into a source for atmospheric N2O again, but it took almost 4 months to turn the cumulative soil N2O fluxes from negative (sink) to positive (source) values. N2O concentration and isotope analyses along soil profiles revealed that N2O produced in the subsoil was subsequently consumed during upward diffusion along the soil profile throughout the entire experiment. Our results show that long drought periods can lead to drastic decreases of N2O fluxes from soils to the atmosphere or may even turn forest soils temporarily to N2O sinks. Accumulation of more field‐scale data on soil N2O uptake as well as a better understanding of underlying mechanisms would essentially advance our knowledge of the global N2O budget. 相似文献
2.
JANET E. BERTRAM TIM J. CLOUGH ROBERT R. SHERLOCK LEO M. CONDRON MAUREEN O'CALLAGHAN† NAOMI S. WELLS JESSICA L. RAY 《Global Change Biology》2009,15(8):2067-2077
Atmospheric concentrations of the greenhouse gas nitrous oxide (N2 O) have continued to rise since the advent of the industrial era, largely because of the increase in agricultural land use. The urine deposited by grazing ruminant animals is a major global source of agricultural N2 O. With the first commitment period for reducing greenhouse gas emissions under the Kyoto Protocol now underway, mitigation options for ruminant urine N2 O emissions are urgently needed. Recent studies showed that increasing the urinary concentration of the minor urine constituent hippuric acid resulted in reduced emissions of N2 O from a sandy soil treated with synthetic bovine urine, due to a reduction in denitrification. A similar effect was seen when benzoic acid, a product of hippuric acid hydrolysis, was used. This current laboratory experiment aimed to investigate these effects using real cow urine for the first time. Increased concentrations of hippuric acid or benzoic acid in the urine led to reduction of N2 O emissions by 65% (from 17% to <6% N applied), with no difference between the two acid treatments. Ammonia volatilization did not increase significantly with increased hippuric acid or benzoic acid concentrations in the urine applied. Therefore, there was a net reduction in gaseous N loss from the soil with higher urinary concentrations of both hippuric acid and benzoic acid. The results show that elevating hippuric acid in the urine had a marked negative effect on both nitrification and denitrification rates and on subsequent N2 O fluxes. This study indicates the potential for developing a novel mitigation strategy based on manipulation of urine composition through ruminant diet. 相似文献
3.
C. Hénault F. Bizouard P. Laville† B. Gabrielle† B. Nicoullaud‡ J. C. Germon P. Cellier† 《Global Change Biology》2005,11(1):115-127
This paper presents a new algorithm, Nitrous Oxide Emission (NOE) for simulating the emission of the greenhouse gas N2O from agricultural soils. N2O fluxes are calculated as the result of production through denitrification and nitrification and reduction through the last step of denitrification. Actual denitrification and nitrification rates are calculated from biological parameters and soil water‐filled pore space, temperature and mineral nitrogen contents. New suggestions in NOE consisted in introducing (1) biological site‐specific parameters of soil N2O reduction and (2) reduction of the N2O produced through nitrification to N2 through denitrification. This paper includes a database of 64 N2O fluxes measured on the field scale with corresponding environmental parameters collected from five agricultural situations in France. This database was used to test the validity of this algorithm. Site per site comparison of simulated N2O fluxes against observed data leads to mixed results. For 80% of the tested points, measured and simulated fluxes are in accordance whereas the others resulted in an important discrepancy. The origin of this discrepancy is discussed. On the other hand, mean annual fluxes measured on each site were strongly correlated to mean simulated annual fluxes. The biological site‐specific parameter of soil N2O reduction introduced into NOE appeared particularly useful to discriminate the general level of N2O emissions from site to site. Furthermore, the relevance of NOE was confirmed by comparing measured and simulated N2O fluxes using some data from the US TRAGNET database. We suggest the use of NOE on a regional scale in order to predict mean annual N2O emissions. 相似文献
4.
The immediate effects of tillage on protected soil C and N pools and on trace gas emissions from soils at precultivation levels of native C remain largely unknown. We measured the response to cultivation of CO2 and N2O emissions and associated environmental factors in a previously uncultivated U.S. Midwest Alfisol with C concentrations that were indistinguishable from those in adjacent late successional forests on the same soil type (3.2%). Within 2 days of initial cultivation in 2002, tillage significantly (P=0.001, n=4) increased CO2 fluxes from 91 to 196 mg CO2‐C m?2 h?1 and within the first 30 days higher fluxes because of cultivation were responsible for losses of 85 g CO2‐C m?2. Additional daily C losses were sustained during a second and third year of cultivation of the same plots at rates of 1.9 and 1.0 g C m?2 day?1, respectively. Associated with the CO2 responses were increased soil temperature, substantially reduced soil aggregate size (mean weight diameter decreased 35% within 60 days), and a reduction in the proportion of intraaggregate, physically protected light fraction organic matter. Nitrous oxide fluxes in cultivated plots increased 7.7‐fold in 2002, 3.1‐fold in 2003, and 6.7‐fold in 2004 and were associated with increased soil NO3? concentrations, which approached 15 μg N g?1. Decreased plant N uptake immediately after tillage, plus increased mineralization rates and fivefold greater nitrifier enzyme activity, likely contributed to increased NO3? concentrations. Our results demonstrate that initial cultivation of a soil at precultivation levels of native soil C immediately destabilizes physical and microbial processes related to C and N retention in soils and accelerates trace gas fluxes. Policies designed to promote long‐term C sequestration may thus need to protect soils from even occasional cultivation in order to preserve sequestered C. 相似文献
5.
Kees-Jan Van Groenigen Johan Six David Harris‡ Herbert Blum§ Chris Van Kessel 《Global Change Biology》2003,9(12):1751-1762
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system. 相似文献
6.
The relationship between nitrous oxide (N2O) flux and N availability in agricultural ecosystems is usually assumed to be linear, with the same proportion of nitrogen lost as N2O regardless of input level. We conducted a 3‐year, high‐resolution N fertilizer response study in southwest Michigan USA to test the hypothesis that N2O fluxes increase mainly in response to N additions that exceed crop N needs. We added urea ammonium nitrate or granular urea at nine levels (0–292 kg N ha?1) to four replicate plots of continuous maize. We measured N2O fluxes and available soil N biweekly following fertilization and grain yields at the end of the growing season. From 2001 to 2003 N2O fluxes were moderately low (ca. 20 g N2O‐N ha?1 day?1) at levels of N addition to 101 kg N ha?1, where grain yields were maximized, after which fluxes more than doubled (to >50 g N2O‐N ha?1 day?1). This threshold N2O response to N fertilization suggests that agricultural N2O fluxes could be reduced with no or little yield penalty by reducing N fertilizer inputs to levels that just satisfy crop needs. 相似文献
7.
STEFANIE DANIELA GOLDBERG KLAUS-HOLGER KNORR† CHRISTIAN BLODAU† GUNNAR LISCHEID‡ GERHARD GEBAUER 《Global Change Biology》2010,16(1):220-233
The impact of experimentally intensified summer drought and precipitation on N2O and NO turnover and fluxes was investigated in a minerotrophic fen over a 2‐year period. On three treatment plots, drought was induced for 6 and 10 weeks by means of roofs and drainage and decreased water table levels by 0.1–0.3 m compared with three nonmanipulated control plots. When averaged over the three treatment plots, both N2O and NO emission showed only little response to the drought. On the single plot scale, however, a clear impact of the treatment on N2O and NO fluxes could be identified. On the plot with the weakest water table reduction hardly any response could be observed, while on the plot with the greatest drainage effect, N2O and NO fluxes increased by 530% and 270%, respectively. Rewetting reduced NO emissions to background levels (0.05–0.15 μmol m?2 h?1), but heavily enhanced N2O emission (18–36 μmol m?2 h?1) for several days in the plots with largest water table reduction. These peaks contributed up to 40% to the cumulative N2O fluxes and were caused by rapid N2O production according to isotope abundance data. According to N2O concentrations and isotope abundance analysis N2O was mostly produced at depths between 0.3 and 0.5 m. During water table reduction net N2O production in 0.1 m depth steadily increased in the most effectively dried plot from 2 up to 44 pmol cm?3 day?1. Rewetting immediately increased net N2O production in the topsoil of the drought plots, showing rates of 18–174 pmol cm?3 day?1. This study demonstrates that drought and rewetting can temporarily increase N2O emission to levels that have to date only been reported from nutrient rich and degraded fens that have been drained for agricultural purposes. 相似文献
8.
Ralf Kiese Changsheng Li† David W. Hilbert‡ Hans Papen Klaus Butterbach-Bahl 《Global Change Biology》2005,11(1):128-144
In contrast to the significant importance of tropical rainforest ecosystems as one of the major sources within the global atmospheric N2O budget (2.2–3.7 Tg N yr?1), regional estimates of their N2O source strength are still limited and highly uncertain. To contribute toward more reliable estimates of the N2O source strength of tropical rainforest ecosystems on a regional scale, we modified a process‐oriented biogeochemical model, PnET‐N‐DNDC, and parameterized it to simulate C and N turnover and associated N2O emissions in and from tropical rainforest ecosystems. Model modifications included: (1) new parameterizations associated with plant physiology and soil hydrology and the addition of algorithms relating daily leaf litterfall to water stress as well as to daily rainfall to account for the effects of heavy rainfall damage; (2) the development of a denitrifier activity index that depends on soil moisture conditions and influences N turnover by denitrification; and (3) the addition of a biological N fixation algorithm. Daily simulated N2O emissions based on site data were in good agreement (model efficiencies up to 0.83) with field observations in the Wet Tropics of Australia and Costa Rica. The model was even able to reproduce the highly dynamic pattern of N2O emissions with short‐term increases during the wet season. Sensitivity analyses demonstrated that the PnET‐N‐DNDC model was sensitive to changes in soil properties such as pH, clay content, soil organic carbon and climatic factors such as rainfall and temperature. By linking the PnET‐N‐DNDC model to a geographic information systems database, tropical rainforests in a 9000 km2 area of the Wet Tropics of Australia are estimated to emit 962 t N2O‐N yr?1 (2.4 kg N2O‐N ha?1 yr?1) between July 1997 and June 1998. 相似文献
9.
MATS G. ÖQUIST TOBIAS SPARRMAN† LEIF KLEMEDTSSON‡ STINA HARRYSSON DROTZ HARALD GRIP JÜRGEN SCHLEUCHER§ MATS NILSSON 《Global Change Biology》2009,15(11):2715-2722
Soil processes in high-latitude regions during winter are important contributors to global carbon circulation, but our understanding of the mechanisms controlling these processes is poor and observed temperature response coefficients of CO2 production in frozen soils deviate markedly from thermodynamically predicted responses (sometimes by several orders of magnitude). We investigated the temperature response of CO2 production in 23 unfrozen and frozen surface soil samples from various types of boreal forests and peatland ecosystems and also measured changes in water content in them after freezing. We demonstrate that deviations in temperature responses at subzero temperatures primarily emanates from water deficiency caused by freezing of the soil water, and that the amount of unfrozen water is mainly determined by the quality of the soil organic matter, which is linked to the vegetation cover. Factoring out the contribution of water limitation to the CO2 temperature responses yields response coefficients that agree well with expectations based on thermodynamic theory concerning biochemical temperature responses. This partitioning between a pure temperature response and the effect of water availability on the response of soil CO2 production at low temperatures is crucial for a thorough understanding of low-temperature soil processes and for accurate predictions of C-balances in northern terrestrial ecosystems. 相似文献
10.
11.
Elevated CO2 concentrations generally stimulate grassland productivity, but herbaceous plants have only a limited capacity to sequester extra carbon (C) in biomass. However, increased primary productivity under elevated CO2 could result in increased transfer of C into soils where it could be stored for prolonged periods and exercise a negative feedback on the rise in atmospheric CO2. Measuring soil C sequestration directly is notoriously difficult for a number of methodological reasons. Here, we present a method that combines C isotope labelling with soil C cycle modelling to partition net soil sequestration into changes in new C fixed over the experimental duration (Cnew) and pre‐experimental C (Cold). This partitioning is advantageous because the Cnew accumulates whereas Cold is lost in the course of time (ΔCnew>0 whereas ΔCold<0). We applied this method to calcareous grassland exposed to 600 μL CO2 L?1 for 6 years. The CO2 used for atmospheric enrichment was depleted in 13C relative to the background atmosphere, and this distinct isotopic signature was used to quantify net soil Cnew fluxes under elevated CO2. Using 13C/12C mass balance and inverse modelling, the Rothamsted model ‘RothC’ predicted gross soil Cnew inputs under elevated CO2 and the decomposition of Cold. The modelled soil C pools and fluxes were in good agreement with experimental data. C isotope data indicated a net sequestration of ≈90 g Cnew m?2 yr?1 in elevated CO2. Accounting for Cold‐losses, this figure was reduced to ≈30 g C m?2 yr?1 at elevated CO2; the elevated CO2‐effect on net C sequestration was in the range of≈10 g C m?2 yr?1. A sensitivity and error analysis suggests that the modelled data are relatively robust. However, elevated CO2‐specific mechanisms may necessitate a separate parameterization at ambient and elevated CO2; these include increased soil moisture due to reduced leaf conductance, soil disaggregation as a consequence of increased soil moisture, and priming effects. These effects could accelerate decomposition of Cold in elevated CO2 so that the CO2 enrichment effect may be zero or even negative. Overall, our findings suggest that the C sequestration potential of this grassland under elevated CO2 is rather limited. 相似文献
12.
BRUCE A. HUNGATE CHRISTOPHER P. LUND HOLLY L. PEARSON F. STUART CHAPIN III 《Biogeochemistry》1997,37(2):89-109
We examined the effects of growth carbon dioxide (CO2)concentration and soil nutrient availability on nitrogen (N)transformations and N trace gas fluxes in California grasslandmicrocosms during early-season wet-up, a time when rates of Ntransformation and N trace gas flux are high. After plant senescenceand summer drought, we simulated the first fall rains and examined Ncycling. Growth at elevated CO2 increased root productionand root carbon:nitrogen ratio. Under nutrient enrichment, elevatedCO2 increased microbial N immobilization during wet-up,leading to a 43% reduction in gross nitrification anda 55% reduction in NO emission from soil. ElevatedCO2 increased microbial N immobilization at ambientnutrients, but did not alter nitrification or NO emission. ElevatedCO2 did not alter soil emission of N2O ateither nutrient level. Addition of NPK fertilizer (1:1:1) stimulatedN mineralization and nitrification, leading to increased N2Oand NO emission from soil. The results of our study support a mechanisticmodel in which elevated CO2 alters soil N cycling and NOemission: increased root production and increased C:N ratio in elevatedCO2 stimulate N immobilization, thereby decreasingnitrification and associated NO emission when nutrients are abundant.This model is consistent with our basic understanding of how C availabilityinfluences soil N cycling and thus may apply to many terrestrial ecosystems. 相似文献