首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kcat value for the oxidation of propionaldehyde by sheep liver cytosolic aldehyde dehydrogenase increased 3-fold, from 0.16 s-1 at pH 7.6 to 0.49 s-1 at pH 5.2, in parallel with the increase in the rate of displacement of NADH from binary enzyme.NADH complexes. A burst in nucleotide fluorescence was observed at all pH values consistent with the rate of isomerization of binary enzyme.NADH complexes constituting the rate-limiting step in the steady state. No substrate activation by propionaldehyde was observed at pH 5.2, but the enzyme exhibited dissociation/association behavior. The inactive dissociated form of the enzyme was favored by low enzyme concentration, low pH, and low ionic strength. Propionaldehyde protected the enzyme against dissociation.  相似文献   

2.
The binding of NADH to porcine mitochondrial malate dehydrogenase in phosphate buffer at pH 7.5 has been studied by equilibrium and kinetic methods. Hyperbolic binding was obtained by fluorimetric titration of enzyme with NADH, in the presence or absence of hydroxymalonate. Identical results were obtained for titrations of NADH with enzyme in the presence or absence of hydroxymalonate, measured either by fluorescence emission intensity or by the product of intensity and anisotropy. The equilibrium constant for NADH dissociation was 3.8 +/- 0.2 micrometers, over a 23-fold range of enzyme concentration, and the value in the presence of saturating hydroxymalonate was 0.33 +/- 0.02 micrometer over a 10-fold range of enzyme concentration. The rate constant for NADH binding to the enzyme in the presence of hydroxymalonate was 3.6 X 10(7) M-1 s-1, while the value for dissociation from the ternary complex was 30 +/- 1 s-1. No limiting binding rate was obtained at pseudo-first order rate constants as high as 200 s-1, and the rate curve for dissociation was a single exponential for at least 98% of the amplitude. In addition to demonstrating that the binding sites are independent and indistinguishable, the absence of effects of enzyme concentration on the KD value indicates that NADH binds with equal affinity to monomeric and dimeric enzyme forms.  相似文献   

3.
The displacement of NADH from cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by using NAD+, 1,10-phenanthroline, ADP-ribose, deamino-NAD+ and pyridine-3-aldehyde-adenine dinucleotide as displacing agents, by following the decrease in fluorescence as a function of time. The data obtained could be fitted by assuming two first-order processes were occurring, a faster process with an apparent rate constant of 0.85 +/- 0.20 s-1 and a relative amplitude of 60 +/- 10% and a slower process with an apparent rate constant of 0.20 +/- 0.05 s-1 and a relative amplitude of 40 +/- 10% (except for pyridine-3-aldehyde-adenine dinucleotide, where the apparent rate constant for the slow process was 0.05 s-1). The displacement rates did not change significantly when the pH was varied from 6.0 to 9.0. Kinetic data are also reported for the dependence of the rate of binding of NADH to the enzyme on the total concentration of NADH. Detailed arguments are presented based on the isolation and purification procedures, the equilibrium coenzyme-binding studies and the kinetic data, which lead to the following model for the release of NADH from the enzyme: (formula: see article). The parameters that best fit the data are: k + 1 = 0.2 s-1; k - 1 = 0.05 s-1; k + 2 = 0.8 s-1 and k - 2 = 5 X 10(5)litre-mol-1-s-1. The slow phase of the NADH release is similar to the steady-state turnover number for substrates such as acetaldehyde and propionaldehyde and appears to contribute significantly to the limitation of the steady-state rate.  相似文献   

4.
Steady state initial velocity studies were carried out to determine the kinetic mechanism of human liver aldehyde dehydrogenase. Intersecting double reciprocal plots obtained in the absence of inhibitors demonstrated that the dehydrogenase reaction proceeded by sequential addition of both substrates prior to release of products. Dead end inhibition patterns obtained with coenzyme and substrate analogues (e.g. thionicotinamide-AD+ and chloral hydrate) indicated that NAD+ and aldehyde can bind in random fashion. The patterns of inhibition by the product NADH and of substrate inhibition by glyceraldehyde were also consistent with this mechanism. However, comparisons between kinetic constants associated with the dehydrogenase and esterase activities of this enzyme suggested that most of the dehydrogenase reaction flux proceeds via formation of an initial binary NAD+-enzyme complex over a wide range of substrate and coenzyme concentrations.  相似文献   

5.
The hydrolysis of 4-nitrophenyl acetate catalysed by cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by steady-state and transient kinetic techniques. NAD+ and NADH stimulated the steady-state rate of ester hydrolysis at concentrations expected on the basis of their Michaelis constants from the dehydrogenase reaction. At higher concentrations of the coenzymes, both NAD+ and NADH inhibited the reaction competitively with respect to 4-nitrophenyl acetate, with inhibition constants of 104 and 197 micron respectively. Propionaldehyde and chloral hydrate are competitive inhibitors of the esterase reaction. A burst in the production of 4-nitrophenoxide ion was observed, with a rate constant of 12 +/- 2s-1 and a burst amplitude that was 30% of that expected on the basis of the known NADH-binding site concentration. The rate-limiting step for the esterase reaction occurs after the formation of 4-nitrophenoxide ion. Arguments are presented for the existence of distinct ester- and aldehyde-binding sites.  相似文献   

6.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

7.
p-Hydroxyacetophenone was coupled to epoxy-activated Sepharose 6B to generate an affinity chromatographic matrix to purify aldehyde dehydrogenase. Purified beef liver mitochondrial aldehyde dehydrogenase specifically bound to the support and could be eluted with p-hydroxyacetophenone. A post-ammonium sulfate (30-55%) fraction of bovine liver was applied to the affinity gel column and aldehyde dehydrogenase was effectively purified, although not to complete homogeneity, indicating the potential selectivity of the matrix. Both beef liver cytosolic and mitochondrial aldehyde dehydrogenase bound to the column. A post-Cibacron blue Sepharose Cl-6B affinity-fractionated liver mitochondrial aldehyde dehydrogenase was purified to complete homogeneity by p-hydroxyacetophenone-Sepharose, thus eliminating the need for the isoelectric focusing step often employed. p-Hydroxyacetophenone was found to be a competitive inhibitor against propionaldehyde and noncompetitive against NAD. Escherichia coli lysates of recombinantly expressed aldehyde dehydrogenase were purified from E. coli lysates with one major 25-kDa protein contaminant also binding to the column, as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 25-kDa contaminant was found to be chloramphenicol acetyl transferase from sequence analysis and binding studies.  相似文献   

8.
The kinetic properties of highly purified preparations of sheep liver cytoplasmic aldehyde dehydrogenase (preparations that had been shown to be free from contamination with the corresponding mitochondrial enzyme) were investigated with both propionaldehyde and butyraldehyde as substrates. At low aldehyde concentrations, double-reciprocal plots with aldehyde as the variable substrate are linear, and the mechanism appears to be ordered, with NAD+ as the first substrate to bind. Stopped-flow experiments following absorbance and fluorescence changes show bursts of NADH production in the pre-steady state, but the observed course of reaction depends on the pre-mixing conditions. Pre-mixing enzyme with NAD+ activates the enzyme in the pre-steady state and we suggest that the reaction mechanism may involve isomeric enzyme--NAD+ complexes. High concentrations of aldehyde in steady-state experiments produce significant activation (about 3-fold) at high concentrations of NAD+, but inhibition at low concentrations of NAD+. Such behaviour may be explained by postulating the participation of an abortive complex in product release. Stopped-flow measurements at high aldehyde concentrations indicate that the mechanism of reaction under these conditions is complex.  相似文献   

9.
1. The influence of Mg2+ on the kinetic behaviour of mitochondrial aldehyde dehydrogenase from rat testis has been investigated using capronaldehyde as substrate. 2. The kinetic data, obtained by numerical analysis of the progress curves of aldehyde oxidation, were fitted to a modified version of the Monod-Wyman-Changeux model and the fitting procedure resulted in a good correspondence between theoretical and experimental reaction rates over a wide range of capronaldehyde and Mg2+ concentrations. 3. According to the model, the tetrameric enzyme is in equilibrium between two conformational states R and T which display comparable affinities for capronaldehyde (the dissociation constants are 0.17 and 0.3 microM, respectively), but different catalytic power (VT = 2VR). The T state can bind with lower affinity a second molecule of aldehyde (K = 2.5 microM). 4. Mg2+ stabilizes the T state (the dissociation constants for the R and T states are 2.2 and 0.12 mM, respectively) and acts as a strong activator of the R state, but as a weak inhibitor of the T state. In the absence of substrates and Mg2+, the R<-->T equilibrium favors the R state ([T]/[R] = 0.16). 5. The model is able to predict the kinetic behaviour also when the NAD+ concentrations are not saturating and when inhibitory effects by NADH are taken into account.  相似文献   

10.
Sheep liver cytoplasmic aldehyde dehydrogenase was purified to homogeneity to give a sample with a specific activity of 380 nmol NADH min(-1) mg(-1). An amino acid analysis of the enzyme gave results similar to those reported for aldehyde dehydrogenases from other sources. The isoelectric point was at pH 5.25 and the enzyme contained no significant amounts of metal ions. On the binding of NADH to the enzyme there is a shift in absorption maximum of NADH to 344 nm, and a 5.6-fold enhancement of nucleotide fluorescence. The protein fluorescence (lambdaexcit = 290 nm, lambdaemisson = 340 nm) is quenched on the binding of NAD+ and NADH. The enhancement of nucleotide fluorescence on the binding of NADH has been utilised to determine the dissociation constant for the enzyme . NADH complex (Kd = 1.2 +/- 0.2 muM). A Hill plot of the data gave a straight line with a slope of 1.0 +/- 0.3 indicating the absence of co-operative effects. Ellman's reagent reacted only slowly with the enzyme but in the presence of sodium dodecylsulphate complete reaction occurred within a few minutes to an extent corresponding to 36 thiol groups/enzyme. Molecular weights were determined for both cytoplasmic and mitochondrial aldehyde dehydrogenases and were 212 000 +/- 8 000 and 205 000 respectively. Each enzyme consisted of four subunits with molecular weight of 53 000 +/- 2 000. Properties of the cytoplasmic and mitochondrial aldehyde dehydrogenases from sheep liver were compared with other mammalian liver aldehyde dehydrogenases.  相似文献   

11.
1. Aldehyde dehydrogenase subcellular distribution studies were performed in a heterogeneous stock (HS) of male and female mice (Mus musculus) with propionaldehyde (5 mM and 50 microM) and formaldehyde (1 mM) and NAD+ or NADP+. 2. The relative percents of distribution were: cytosolic 55-68%, mitochondrial 12-20%, microsomal 9-18% and lysosomal 3-15% for both propionaldehyde concentrations and NAD+. 3. Kinetic experiments using propionaldehyde and acetaldehyde with NAD+ revealed two separate enzymes, Enzyme I (low Km) and Enzyme II (high Km) in the cytosolic and mitochondrial fractions. 4. The kinetic data also indicated a spectrum of cytosolic low Km values that exhibited a bimodal distribution with one congruent to 40 microM and one congruent to 5 microM. 5. It was concluded that there was no significant difference in aldehyde-metabolizing capability between male and female HS mice, compared on a per gram of liver basis. The cytosolic low Km enzyme plays a major role in aldehyde oxidation at moderate to low aldehyde concentrations.  相似文献   

12.
The substrate benzaldehyde (but not propionaldehyde) could elute aldehyde dehydrogenase from a p-hydroxyacetophenone-affinity column, and inhibit the esterase activity (K(i)=47 microM), indicating that this simple aromatic aldehyde binds to the free enzyme and possibly in the substrate-binding site. Thus, the kinetic mechanism for aldehyde dehydrogenase might be dependent upon which aldehyde is used in the reaction. Chloramphenicol which also elutes the enzyme from the affinity column, shows a discriminatory effect by inhibiting the ALDH1 oxidation of benzaldehyde and activating that of propionaldehyde while showing no effect when assayed with hexanal or cyclohexane-carboxaldehyde. Chloramphenicol is an uncompetitive inhibitor against NAD when benzaldehyde is the substrate. We propose that this drug might interact with both the benzaldehyde and NAD binding sites.  相似文献   

13.
The steady-state kinetics of the oxidative decarboxylation of 6-phosphogluconate catalysed by 6-phosphogluconate dehydrogenase from sheep liver in triethanolamine and phosphate buffers (pH 7.0) have been reinvestigated. In triethanolamine buffer the enzyme is inhibited by high NADP+ concentrations in the presence of low fixed concentrations of 6-phosphogluconate. Data are consistent with an asymmetric sequential mechanism in which NADP+ and 6-phosphogluconate bind randomly and product release is ordered. The pathway through the enzyme--6-phosphogluconate complex appears to be preferred in triethanolamine buffer. Pre-steady-state studies of the oxidative decarboxylation reaction at pH 6.0-8.0 show that hydride transfer is greater than 900 s-1. After the fast formation of NADPH in amounts equivalent to about half of the enzyme-active-centre concentration, the rate of NADPH formation is equal to the steady-state rate. Two possible interpretations are considered. Rapid fluorescence measurements of the displacement of NADPH from its complex with the enzyme at pH 6.0 and 7.0 indicate that the dissociation of NADPH is fast (greater than 800 s-1) and cannot be the rate-limiting step in oxidative decarboxylation. Coenzyme binding studies at equilibrium have been extended to include the determination of the dissociation constants for the binary complexes of enzyme with NADPH and NADP+ at pH 6.0-8.0 and the dissociation constant for NADPH in the ternary enzyme--6-phosphogluconate--NADPH complex in triethanolamine buffer, pH 7.0.  相似文献   

14.
The kinetics of the NAD+-dependent oxidation of aldehydes, catalysed by aldehyde dehydrogenase purified from sheep liver mitochondria, were studied in detail. Lag phases were observed in the assays, the length of which were dependent on the enzyme concentration. The measured rates after the lag phase was over were directly proportional to the enzyme concentration. If enzyme was preincubated with NAD+, the lag phase was eliminated. Double-reciprocal plots with aldehyde as the variable substrate were non-linear, showing marked substrate activation. With NAD+ as the variable substrate, double-reciprocal plots were linear, and apparently parallel. Double-reciprocal plots with enzyme modified with disulfiram (tetraethylthiuram disulphide) or iodoacetamide, such that at pH 8.0 the activity was decreased to 50% of the control value, showed no substrate activation, and the plots were linear. At pH 7.0, the kinetic parameters Vmax. and Km NAD+- for the oxidation of acetaldehyde and butyraldehyde by the native enzyme are almost identical. Formaldehyde and propionaldehyde show the same apparent maximum rate. Aldehyde dehydrogenase is able to catalyse the hydrolysis of p-nitrophenyl esters. This esterase activity was stimulated by both NAD+ and NADH, the maximum rate for the NAD+ stimulated esterase reaction being roughly equal to the maximum rate for the oxidation of aldehydes. The mechanistic implications of the above behaviour are discussed.  相似文献   

15.
Cytoplasmic aldehyde dehydrogenase may be modified by reaction with p-nitrophenyl dimethylcarbamate to give a stable E-X-CO-NMe2 species that is an analogue of the usual labile acyl-enzyme involved in the enzyme's reactions. [X is derived from an enzymic nucleophilic group.] This species still contains the tightly bound NADH that is present in the native enzyme. When further NADH binds to E-X-CO-NMe2 its fluorescence is enhanced over 4 times more than when it binds to unmodified enzyme; this fluorescence is completely unaffected by high propionaldehyde concentration and only slightly affected by p-nitrobenzaldehyde. The modified species has 1.0 NADH binding site in the absence of Mg2+ and 1.67 sites in its presence. The rate of dissociation of E-X-CO-NMe2.NADH is biphasic (k 3.4 and 1.8 min-1) and is considerably lower than that of E.NADH; the presence of Mg2+ slows the process even more (k 0.47 and 0.37 min-1). The implications of these studies towards a greater understanding of the nature of aldehyde dehydrogenase-catalysed reactions are discussed.  相似文献   

16.
Preparations of sheep liver cytoplasmic aldehyde dehydrogenase obtained by published methods were found by analytical isoelectric focusing in the pH range 5--8 to contain 5--10% by weight of the mitochondrial aldehyde dehydrogenase. Under the conditions used the pI of the cytoplasmic enzyme is 6.2 and that of the mitochondrial enzyme 6.6. The mitochondrial enzyme can be removed from the preparation by selective precipitation of the cytoplasmic enzyme with (NH4)2SO4. Kinetic experiments and inhibition experiments with disulfiram show that the properties of the two sheep liver enzymes are so different that the presence of 10% mitochondrial enzyme in preparations of the cytoplasmic enzyme can introduce serious errors into results. Our results suggest that the presence of 10 microM-disulfiram in assays may completely inactivate the pure cytoplasmic enzyme. This result is in contrast with a previous report [kitson (1978) Biochem. U. 175, 83--90].  相似文献   

17.
The substrate benzaldehyde (but not propionaldehyde) could elute aldehyde dehydrogenase from a p-hydroxyacetophenone-affinity column, and inhibit the esterase activity (Ki=47 μM), indicating that this simple aromatic aldehyde binds to the free enzyme and possibly in the substrate-binding site. Thus, the kinetic mechanism for aldehyde dehydrogenase might be dependent upon which aldehyde is used in the reaction. Chloramphenicol which also elutes the enzyme from the affinity column, shows a discriminatory effect by inhibiting the ALDH1 oxidation of benzaldehyde and activating that of propionaldehyde while showing no effect when assayed with hexanal or cyclohexane–carboxaldehyde. Chloramphenicol is an uncompetitive inhibitor against NAD when benzaldehyde is the substrate. We propose that this drug might interact with both the benzaldehyde and NAD binding sites.  相似文献   

18.
Betaine aldehyde dehydrogenase has been purified to homogeneity from rat liver mitochondria. The properties of betaine aldehyde dehydrogenase were similar to those of human cytoplasmic E3 isozyme in substrate specificity and kinetic constants for substrates. The primary structure of four tryptic peptides was also similar; only two substitutions, at most, per peptide were observed. Thus, betaine aldehyde dehydrogenase is not a specific enzyme, as formerly believed; activity with betaine aldehyde is a property of aldehyde dehydrogenase (EC 1.2.1.3), which has broad substrate specificity. Up to the present time the enzyme was thought to be cytoplasmic in mammals. This report establishes, for the first time, mitochondrial subcellular localization for aldehyde dehydrogenase, which dehydrogenates betaine aldehyde, and its colocalization with choline dehydrogenase. Betaine aldehyde dehydrogenation is an important function in the metabolism of choline to betaine, a major osmolyte. Betaine is also important in mammalian organisms as a major methyl group donor and nitrogen source. This is the first purification and characterization of mitochondrial betaine aldehyde dehydrogenase from any mammalian species.  相似文献   

19.
Bovine lens aldehyde dehydrogenase. Kinetics and mechanism.   总被引:3,自引:2,他引:1       下载免费PDF全文
Bovine lens cytoplasmic aldehyde dehydrogenase exhibits Michaelis-Menten kinetics with acetaldehyde, glyceraldehyde 3-phosphate, p-nitrobenzaldehyde, propionaldehyde, glycolaldehyde, glyceraldehyde, phenylacetylaldehyde and succinic semialdehyde as substrates. The enzyme was also active with malondialdehyde, and exhibited an esterase activity. Steady-state kinetic analyses show that the enzyme exhibits a compulsory-ordered ternary-complex mechanism with NAD+ binding before acetaldehyde. The enzyme was inhibited by disulfiram and by p-chloromercuribenzoate, and studies with with mercaptans indicated the involvement of thiol groups in catalysis.  相似文献   

20.
1. The rate constants for NADH binding and dissociation for carboxymethylated alcohol dehydrogenase have been determined and compared to those for the native enzyme. 2. Steady-state and transient kinetic experiments have shown that the hydrogen transfer step is rate-determining for oxidation of ethanol by carboxymethylated alcohol dehydrogenase. The rate constant of 0.19 s-1 is considerably slower than that for the native enzyme. 3. The steady-state parameter, V/[E], was obtained for each of a series of alcohols and correlated with the Taft sigma parameter. The linear relationship obtained indicates that the same step, hydrogen transfer, is rate-determining for all the alcohols. The sigma value obtained is the same as for the native enzyme; the implications of this for the mechanism of hydrogen transfer are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号