首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of exogenous noradrenaline (NA) (1.6 mg.kg(-1) i.p., 35 min prior sacrifice) on the activity of antioxidant enzymes (AOE) copper zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT), as well as lipid peroxides (LP) concentration were studied in the rat interscapular brown adipose tissue (IBAT) and heart of saline (controls) and N(omega)-nitro-L-arginine methyl ester (L-NAME) treated rats (10 mg.kg(-1), i.p., during 3 days and 20 min before NA). NA differently affects both AOE activities and LP production in the IBAT and heart. Thus, NA inhibited the activity of all IBAT AOE and LP production while in the heart it markedly increased CAT activity only, but had no effect on any of SODs activities and LP concentration. L-NAME, a nitric oxide synthase blocker, completely abolished the NA-induced inhibition of the IBAT AOE and LP production, whereas in the heart it was without effect. In conclusion, these results indicate that both NA and L-NAME effects on AOE activity and LP production are tissue specific and also suggest that nitric oxide mediates the NA-induced inhibition of AOE activity and LP production in the IBAT only.  相似文献   

2.
Alterations of pancreatic antioxidative defense (AD) and possible nitric oxide (NO) role in AD organization of adult rats receiving l-arginine.HCl (2.25%) or N(omega)-nitro-l-arginine methyl ester (L-NAME.HCl, 0.01%) as drinking liquids and maintained at room (22+/-1 degrees C) or low (4+/-1 degrees C) temperature for 45 days were studied. For that purpose, copper, zinc- and manganese superoxide dismutase (CuZnSOD, MnSOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST) and glutathione reductase (GR) activities were determined. Cold-induced decrease of CuZnSOD was inhibited with L-NAME, while l-arginine produced the same effect as cold in both supplemented groups. Cold acclimation elevated GSH-Px activity. l-Arginine and L-NAME expressed no effect on GSH-Px in rats kept at room temperature. L-NAME additionally elevated cold-induced GSH-Px activity, l-arginine expressing a similar trend. Cold-induced increase in GST activity was inhibited by L-NAME, while l-arginine inhibited this enzyme in both supplemented groups. Cold acclimation increased GR activity in control and L-NAME-treated group and l-arginine expressed a similar trend. Neither of the treatments affected MnSOD and CAT activities. Cold-induced changes of pancreatic AD were additionally affected by the alterations in l-arginine-NO-producing pathway. Some AD changes in the same direction with l-arginine or L-NAME point to the complexity of nitrogen compounds metabolism and function, accompanied by tissue-specific response.  相似文献   

3.
We demonstrate herein that nitric oxide (*NO) and nitrogen dioxide (*NO2) both react with the tyrosyl radical formed in sperm whale myoglobin (swMb) by reaction with hydrogen peroxide. The tyrosyl radical was detected by Western blotting using a novel anti-5,5-dimethyl-1-pyrroline N-oxide (DMPO) polyclonal antiserum that specifically recognizes protein radical-derived DMPO nitrone adducts. In the presence of DMPO, hydrogen peroxide reacts with swMb to form the DMPO tyrosyl radical as is known from both electron spin resonance and immuno-spin trapping investigations. Both *NO and NO2- significantly suppressed DMPO-Mb formation under the physiological oxygen tension of 30 mm Hg. If this inhibition of DMPO trapping of the tyrosyl radical is due, at least in part, to the reaction of the tyrosyl radical with *NO and *NO2, then nitrotyrosine should be formed. In line with this expectation, swMb treated with low concentrations of *NO or NO2- formed nitrotyrosine when hydrogen peroxide was added under 30 mm Hg oxygen tension as detected by Western blotting. The amount of nitrotyrosine generated with *NO was higher than with NO2-, implying that there are two different peroxynitrite-independent nitrotyrosine formation mechanisms and that *NO is not just a source of *NO2.  相似文献   

4.
Although native LDL (n-LDL) is well recognized for inducing endothelial cell (EC) dysfunction, the mechanisms remain unclear. One hypothesis is n-LDL increases caveolin-1 (Cav-1), which decreases nitric oxide (*NO) production by binding endothelial nitric oxide synthase (eNOS) in an inactive state. Another is n-LDL increases superoxide anion (O(2)(*-)), which inactivates *NO. To test these hypotheses, EC were incubated with n-LDL and then analyzed for *NO, O(2)(*-), phospho-eNOS (S1179), eNOS, Cav-1, calmodulin (CaM), and heat shock protein 90 (hsp90). n-LDL increased NOx by more than 4-fold while having little effect on A23187-stimulated nitrite production. In contrast, n-LDL decreased cGMP under basal and A23187-stimulated conditions and increased O(2)(*-) by a mechanism that could be inhibited by L-nitroargininemethylester (L-NAME) and BAPTA/AM. n-LDL increased phospho-eNOS by 149%, eNOS by approximately 34%, and Cav-1 by 28%, and decreased the association of hsp90 with eNOS by 49%. n-LDL did not appear to alter eNOS distribution between membrane fractions (approximately 85%) and cytosol (approximately 15%). Only 3-6% of eNOS in membrane fractions was associated with Cav-1. These data support the hypothesis that n-LDL increases O(2)(*-), which scavenges *NO, and suggest that n-LDL uncouples eNOS activity by decreasing the association of hsp90 as an initial step in signaling eNOS to generate O(2)(*-).  相似文献   

5.
The aim of the present study was to explore the effect of nitric oxide on leptin immunoexpression and innervation in interscapular brown adipose tissue (IBAT) of room- and cold- acclimated rats. Animals acclimated both to room-temperature (22 +/- 1 degrees C) and cold (4 +/- 1 degrees C) were treated with L-arginine, a substrate for nitric oxide synthases (NOSs), or N?-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOSs, for 45 days. Leptin expression and localization in brown adipocytes was studied by immunohistochemistry, and innervation stained by the Bodian method. Strong leptin immunopositivity was observed in brown adipocytes cytoplasm of all room-acclimated groups, but nuclear leptin positivity was found only in L-NAME treated rats. In cold-acclimated control and L-NAME treated rats leptin immunopositivity was absent, while L-arginine treatment reversed the cold-induced suppression of leptin expression. Comparing to control, L-arginine, and even more L-NAME, at 22 +/- 1 degrees C induced greater innervation. In conclusion, L-arginine treatment changes leptin expression pattern on cold in rat IBAT.  相似文献   

6.
Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased NO release and impaired pulmonary vasodilation. We investigated the hypothesis that increased superoxide (O(2)(*-)) release by an uncoupled endothelial nitric oxide synthase (eNOS) contributes to impaired pulmonary vasodilation in PPHN. We investigated the response of isolated pulmonary arteries to the NOS agonist ATP and the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus and in sham-ligated controls in the presence or absence of the NOS antagonist nitro-L-arginine methyl ester (L-NAME) or the O(2)(*-) scavenger 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron). ATP caused dose-dependent relaxation of pulmonary artery rings in control lambs but induced constriction of the rings in PPHN lambs. L-NAME, the NO precursor L-arginine, and Tiron restored the relaxation response of pulmonary artery rings to ATP in PPHN. Relaxation to NO was attenuated in arteries from PPHN lambs, and the response was improved by L-NAME and by Tiron. We also investigated the alteration in heat shock protein (HSP)90-eNOS interactions and release of NO and O(2)(*-) in response to ATP in the pulmonary artery endothelial cells (PAEC) from these lambs. Cultured PAEC and endothelium of freshly isolated pulmonary arteries from PPHN lambs released O(2)(*-) in response to ATP, and this was attenuated by the NOS antagonist L-NAME and superoxide dismutase (SOD). ATP stimulated HSP90-eNOS interactions in PAEC from control but not PPHN lambs. HSP90 immunoprecipitated from PPHN pulmonary arteries had increased nitrotyrosine signal. Oxidant stress from uncoupled eNOS contributes to impaired pulmonary vasodilation in PPHN induced by ductal ligation in fetal lambs.  相似文献   

7.
Nitric oxide synthases (NOS) convert L-arginine and N(omega)-hydroxy-L-arginine to nitric oxide (*NO) and/or nitroxyl (NO(-)) in a NADPH-dependent fashion. Subsequently, *NO/superoxide (O(2-)-derived peroxynitrite (ONOO(-)) consumes one additional mol NADPH. The related stoichiometry of NO(-) and NADPH is unclear. We here describe that NO(-) also oxidizes NADPH in a concentration-dependent manner. In the presence of superoxide dismutase (SOD), which also converts NO(-) to *NO, nitrite accumulation was almost doubled and no oxidation of NADPH was observed. Nitrate yield from NO(-) was low, arguing against intermediate ONOO(-) formation. Thus, biologically formed NO(-) may function as an effective pro-oxidant unless scavenged by SOD and affect the apparent NADPH stoichiometry of the NOS reaction.  相似文献   

8.
9.
10.
The activity of antioxidant enzymes, copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT), as well as that of the mitochondrial FAD-dependent alpha-glycerophosphate dehydrogenase (alpha-GPD) in the rat interscapular brown adipose tissue (IBAT) were studied after the treatment with methimazole (MMI) for three weeks or with iopanoic acid (IOP) for five days. Besides, the mitochondrial concentration of uncoupling protein-1 (UCP-1) and the activity of catecholamine degrading enzyme monoamine oxidase (MAO) in the IBAT as well as the activity of the catecholamine synthesizing enzyme, dopamine beta-hydroxylase (DBH) in rat serum were examined. Judging by the significantly enhanced level of serum DBH, which is an index of sympathetic activity, and that of IBAT MAO, the increase in MnSOD and CAT activities in the IBAT of hypothyroid (MMI-treated) rats seems to be due to elevated activity of sympathetic nervous system (SNS). However, CuZnSOD activity is not affected by SNS. On the contrary, IOP, which is a potent inhibitor of T4 deiodination into T3 producing "local" hypothyroidism, did not change either SNS activity or activities of IBAT antioxidant enzyme. However, both treatments significantly decreased IBAT UCP-1 content and alpha-GPD activity suggesting that the optimal T3 concentration in the IBAT is necessary for maintaining basal levels of these key mitochondrial parameters.  相似文献   

11.
The aim of this study was to investigate the role of nitric oxide (NO) in hepatic ischemia-reperfusion (I/R) injury in rats. Immunohistochemistry was used to examine the protein expression of endothelial and inducible nitric oxide synthases (eNOS, iNOS) and nitrotyrosine after I/R challenges to the liver, and blood levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactic dehydrogenase (LDH), hydroxyl radical and NO were measured before ischemia and after reperfusion. Ischemia was induced by occlusion of the common hepatic artery and portal vein for 40 min, followed by reperfusion for 90 min. Reperfusion of the liver induced a significant increase in the blood concentrations of AST, ALT, LDH (n = 8; P < 0.001), hydroxyl radical (n = 8; P < 0.001) and NO (n = 8; P < 0.01). The eNOS, iNOS, nitrotyrosine, SOD1 and SOD2 protein expression was also found to increase significantly after reperfusion (n = 3). Administration of the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (n = 8) had a protective effect on the I/R-related injury, but the NO donor L-arginine (L-Arg) (n = 8) potentiated the damage caused by I/R. These results suggest that reperfusion of the liver induces expression of NOS, which is related to the elevation of blood NO. The increase in hydroxyl radical concentration was accompanied by an increase in antioxidant enzyme expression (SOD1 and SOD2), and an increase in nitrotyrosine expression was also observed, reflecting the increased production of NO and oxygen radicals. We concluded from the protective effect of L-NAME and the potentiation by L-Arg that NOS expression and increases in NO and hydroxyl radical production have deleterious effects on the response to I/R in the liver.  相似文献   

12.
The impact of L-arginine (LA), a precursor for synthesis of nitric oxide (NO), and N-omega-nitro-L-arginine methyl ester (L-NAME, LN), a non-selective inhibitor of the enzyme producing nitric oxide (nitric oxide synthase; NOS) chronic toxicity induced lesions on Ascites - Pulmonary hypertension syndrome (PHS) development was investigated in 140 one-day-old male broiler chickens (ROSS) during the first 5 weeks of life. Every second day the animals were treated intraperitoneally (ip) with L-NAME (10 mg/kg of body weight; BW), L-arginine (100 mg/kg BW), L-arginine and L-NAME in combination (100 mg/kg BW and 10 mg/kg BW respectively), and with physiological saline (0.90% w/v of NaCl; 0.5 mL/kg BW). Seven birds from each group were euthanized every week. The histopathological examination of the heart, the liver, the lungs, the blood vessels and the lymphoid organs, was performed. Also the organ index values were determined. At the end of the experiment the pre-ascitic condition or ascites - PHS was confirmed in five dead animals in the L-NAME-treated group. In the same group the edema was the most prominent histopathological change confirmed in the heart and in the lungs of the sacrificed chickens. In L-arginine-treated group the congestion and the haemorrhages were the striking changes in the same organs with the highest degree in the last two weeks of trial. While the focal disruption of myocardiofibriole and hepatocytes were predominant lesions in L-NAME-treated chickens (5th and 4th weeks, respectively), in L-NAME/L-arginine-treated group only the mild focal myocardial degeneration was seen. According to the most of the results of present investigation, it was concluded that the consecutive treatment with L-NAME provoked ascites - PHS, while L-arginine has protective effect in this animal model of disease.  相似文献   

13.
Previous reports suggest heat shock protein 90 (hsp90) associates with endothelial nitric-oxide synthase (eNOS) to increase nitric oxide (*NO) generation. Ansamycin inhibition of chaperone-dependent activity increases eNOS generation of superoxide anion (O(2)(*)) upon enzyme activation. In the present study we identify where hsp90 binds to eNOS using overlapping decoy peptides based on the amino acid (aa) sequence of eNOS (291-420). B1, B2, and B3 peptides inhibited hsp90 association with eNOS in cell lysates from proliferating bovine aortic endothelial cells. B2 (aa 301-320), common to both B1 and B3, decreased stimulated *NO production and hsp90 association in bovine aortic endothelial cells. The B2/B3 peptide was redesigned to TSB2 that includes a TAT protein transduction domain and shortened to 14 aa. TSB2 impaired vasodilation of isolated facialis arteries in vitro and in vivo and increased eNOS-dependent O(2)(*) generation in native endothelial cells on mouse aortas, whereas a control peptide, TSB(Ctr), which has the four glutamic acids in TSB2 substituted with alanine, showed no such effects. Site-directed mutagenesis of eNOS at 310, 314, 318, and 323 Glu to Ala yields an eNOS mutant that exhibited reduced hsp90 association and generated O(2)(*) rather than *NO upon activation. Together, these data demonstrate that hsp90 associates with eNOS at aa 310-323. Moreover, a decoy peptide based on this sequence is sufficient to displace hsp90 from eNOS and uncouple eNOS activity from *NO generation. Thus, Glu-310, Glu-314, Glu-318, and Glu-323 in eNOS, although each does not do much by itself, synergistically they increase "cooperativity" in the association step that is critical for maintaining hsp90-eNOS interactions and promoting coupled eNOS activity. Such chaperone-dependent signaling may play an important role in modulating the balance of *NO and O(2)(*) generation from eNOS and, therefore, vascular function.  相似文献   

14.
Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases. High levels of plasma homocysteine (HCY) increase oxidative stress and reduce endothelial-dependent relaxation. We determined whether hyperhomocysteinemia-induced endothelial dysfunction is mediated through inhibition of cellular transport of L-arginine. In endothelial cells, HCY had a biphasic effect on arginine transport. HCY treatment for 6 hr increased L-arginine uptake by 34%; however, uptake was decreased by 25% after 24 h. HCY caused membrane hyperpolarization during both 6 and 24 h incubation periods, indicating that the negative charge facilitating arginine uptake was maintained. HCY significantly reduced expression of cellular arginine transporter protein (CAT-1) after 24 h treatment; whereas endothelial nitric oxide synthase (eNOS) protein levels and basal eNOS activity were not altered. Nevertheless, nitric oxide (NO) formation was significantly decreased. The antioxidant ascorbic acid prevented the effect of HCY on arginine transport. HCY induced formation of the peroxynitrite biomarker nitrotyrosine, which was blocked by supplemental L-arginine. HCY treatment of aortic rings caused decreased vasorelaxation to acetylcholine, which was prevented by supplemental arginine. In conclusion, HCY decreased NO formation and induced endothelial dysfunction without altering protein level or basal activity of eNOS, but through decreases in function and protein expression of the CAT-1 transporter. Reduced arginine supply may lead to eNOS uncoupling and generation of superoxide, contributing to HCY-induced oxidative stress.  相似文献   

15.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

16.
To test the hypothesis that the antioxidant enzyme superoxide dismutase (SOD) mimetic TEMPOL improves arterial aging, young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6 mice received regular or TEMPOL-supplemented (1mM) drinking water for 3 weeks (n = 8 per group). Aortic superoxide was 65% greater in O (P < 0.05 vs. Y), which was normalized by TEMPOL. O had large elastic artery stiffening, as indicated by greater aortic pulse wave velocity (aPWV, 508 ± 22 vs. 418 ± 22 AU), which was associated with increased adventitial collagen I expression (P < 0.05 vs. Y). TEMPOL reversed the age-associated increases in aPWV (434 ± 21 AU) and collagen in vivo, and SOD reversed the increases in collagen I in adventitial fibroblasts from older rats in vitro. Isolated carotid arteries of O had impaired endothelial function as indicated by reduced acetylcholine-stimulated endothelium-dependent dilation (EDD) (75.6 ± 3.2 vs. 94.5 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (L-NAME) associated with decreased endothelial NO synthase (eNOS) expression (P < 0.05 vs. Y). TEMPOL restored EDD (94.5 ± 1.4%), NO bioavailability and eNOS in O. Nitrotyrosine and expression of NADPH oxidase were ~100-200% greater, and MnSOD was ~75% lower in O (P < 0.05 vs. Y). TEMPOL normalized nitrotyrosine and NADPH oxidase in O, without affecting MnSOD. Aortic pro-inflammatory cytokines were greater in O (P < 0.05 vs. Y) and normalized by TEMPOL. Short-term treatment of excessive superoxide with TEMPOL ameliorates large elastic artery stiffening and endothelial dysfunction with aging, and this is associated with normalization of arterial collagen I, eNOS, oxidative stress, and inflammation.  相似文献   

17.
Although the role of nitric oxide (NO) in peripheral glucose uptake has been thoroughly described, little is known regarding the alterations in NO metabolism during the early onset of insulin resistance. During this study we investigated the alterations in NO synthesis and bioavailability in a model for dietary modulations of insulin sensitivity. For 6 weeks, rats were fed a standard diet (C), a high-sucrose diet inducing insulin resistance (HS), or high-sucrose diets supplemented with cysteine, which endowed protection against the high-sucrose-induced insulin resistance (Ti). Several markers of NO synthesis and bioavailability were assessed and confronted with markers of insulin sensitivity. After 5 weeks, although urinary cGMP excretion did not differ between the groups, insulin resistance in HS rats was associated with both a significant increase in NO oxidation, as determined by plasma nitrotyrosine concentrations, and in the inducible NO synthase (iNOS)/endothelial NO synthase (iNOS/eNOS) mRNA ratio in skeletal muscle compared with C rats. These alterations were prevented in rats fed the cysteine-rich diets. NO production, as assessed by urinary 15NO3* excretion following a [15N2-(guanido)]-arginine intra-venous bolus, independently and significantly correlated with insulin sensitivity but did not significantly differ between C, HS, and Ti rats; neither did the aortic eNOS protein expression or skeletal muscle insulin-induced eNOS activation. Our results indicate that in this model of dietary modulations of insulin sensitivity (i) NO production accounts for part of total inter-individual variation in insulin sensitivity, but (ii) early diet-related changes in insulin sensitivity are accompanied by changes in NO bioavailability.  相似文献   

18.
The possible involvement of nitric oxide (*NO) in the preservation of blood flow to the canine gingiva after compression of gingival tissue was studied. Gingival blood flow, gingival tissue oxygen partial pressure (PO2), external carotid arterial blood pressure and external carotid arterial blood flow were monitored before, during, and after compression of gingival tissue in the presence and absence of the nitric oxide synthase inhibitor, Nomega-nitro-L-arginine-methyl-ester (L-NAME). Compression of gingival tissue resulted in an immediate decrease in gingival blood flow and tissue PO2. After the compression of gingival tissue, hyperemia was observed in the gingiva, which depended on the duration of ischemia. Gingival tissue PO2 slowly recovered during hyperemia. Pretreatment with L-NAME (60 mg/kg, i.a.) significantly suppressed reactive hyperemia in gingival tissue. The L-NAME-suppressed reactive hyperemia was partially reversed by treatment with L-arginine (60 mg/kg, i.a.). In addition, *NO was detected using an *NO selective electrode during interruption of blood flow and during reactive hyperemia in the gingiva. These results suggest that *NO contributes to the vasodilation during reactive hyperemia in gingival tissue, and aids in the maintenance of homeostasis in gingival circulation.  相似文献   

19.
Fasting for 48 h and the same period of recovery induced by 48 h refeeding increased rat hypothalamic monoamine oxidase (MAO) activity. However, in the interscapular brown adipose tissue (IBAT), only refeeding induced a significant elevation of the enzyme activity. As far as hypothalamic antioxidative enzymes are concerned, the copper zinc superoxide dismutase (CuZnSOD) activity was decreased in refed rats only. However, in the IBAT both food deprivation and refeeding induced a significant decrease in catalase (CAT) activity. Under the influence of fasting the adrenal glands were strongly activated as judged by the increased dopamine-beta-hydroxylase (DBH) activity and decreased cholesterol concentration. Refeeding brought both parameters to control levels indicating full recovery of these glands. As expected, fasting for 48 h induced a significant decrease in serum glucose but an increase in FFA concentrations. Thus, it can be concluded that both fasting and refeeding resulted in increased activation of hypothalamic MAO, whereas CuZnSOD activity was decreased only by refeeding. However, in the IBAT only refeeding increased MAO activity whereas both fasting and refeeding decreased that of CAT. In conclusion, it may be assumed that food deprivation for 48 h and the same duration of refeeding influenced MAO and antioxidative enzymes activities in the rat hypothalamus and IBAT in a tissue specific manner.  相似文献   

20.
《Free radical research》2013,47(11):1335-1343
Abstract

We hypothesize that exercise training (EX) reverses the level of nitric oxide (NO) and oxidative stress into rostral ventrolateral medulla (RVLM) of renovascular hypertensive rats (two kidneys, one clip - 2K1C). Microinjections of L-arginine (5 nmol), L-NAME (10 nmol), or saline (100 nl) were made into RVLM of 2K1C and normotensive (SHAM) rats sedentary (SED) or subjected to swimming for 4 weeks. mRNA expression (by qRT-PCR) of nitric oxide synthases isoforms (nNOS, eNOS, and iNOS), manganese superoxide dismutase (MnSOD), copper and zinc superoxide (Cu/ZnSOD), catalase (CAT), NADPH oxidase subunit p22phox, concentration of thiobarbituric acid-reactive substances (TBARS), and CAT activity into RVLM were evaluated. The mean arterial pressure was reduced in 2K1C EX compared with that in 2K1C SED rats. L-arginine into RVLM induced hypertensive effect in 2K1C and SHAM SED rats, while L-NAME prevented hypertensive effect only in SHAM-SED. EX reduced hypertensive effect of L-arginine in SHAM and 2K1C rats. mRNA expression of NOS isoforms, p22phox, and concentration of TBARS were increased while CAT and Cu/ZnSOD expression and CAT activity decreased into RVLM of 2K1C-SED compared with SHAM-SED rats. Additionally, EX reversed mRNA expression of CAT and NOS isoforms, concentration of TBARS, and CAT activity into RVLM of 2K1C-EX rats. These data suggest that the levels of NOS and oxidative stress into RVLM are important to determine the level of hypertension. Furthermore, EX can restore the blood pressure by reversing the levels of NOS and CAT expression, and reducing TBARS concentration into RVLM for the physiological state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号