首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adhesion of Plasmodium falciparum-infected erythrocytes to endothelial cells and to syncytiotrophoblasts lining the placenta is a key feature of malaria pathogenesis. P. falciparum erythrocyte membrane protein 1, a family of variable proteins, mediates adhesion to CD36 and intercellular adhesion molecule 1 in the systemic vasculature, and to chondroitin sulphate A and hyaluronic acid in the placenta. Recent studies of the pathology of fatal cerebral malaria and of placental malaria that follow such sequestration suggest that coagulation disturbances may have a greater role in pathogenesis than previously realized, and that monocyte infiltrates in response to malaria may initiate some of these changes. Chemokines such as macrophage inflammatory protein 1 alpha and beta and monocyte chemoattractant protein 1 may play a key role in attracting monocytes to the placenta and other organs, but the stimulus to chemokine secretion is not presently known.  相似文献   

2.
Bourgeois D  Adam V 《IUBMB life》2012,64(6):482-491
Phototransformable fluorescent proteins (FPs) have received considerable attention in recent years, because they enable many new exciting modalities in fluorescence microscopy and biotechnology. On illumination with proper actinic light, phototransformable FPs are amenable to long-lived transitions between various fluorescent or nonfluorescent states, resulting in processes known as photoactivation, photoconversion, or photoswitching. Here, we review the subclass of photoswitchable FPs with a mechanistic perspective. These proteins offer the widest range of practical applications, including reversible high-density data bio-storage, photochromic FRET, and super-resolution microscopy by either point-scanning, structured illumination, or single molecule-based wide-field approaches. Photoswitching can be engineered to occur with high contrast in both Hydrozoan and Anthozoan FPs and typically results from a combination of chromophore cis-trans isomerization and protonation change. However, other switching schemes based on, for example, chromophore hydration/dehydration have been discovered, and it seems clear that ever more performant variants will be developed in the future.  相似文献   

3.
Diversity and variability of plant secondary metabolism: a mechanistic view   总被引:6,自引:0,他引:6  
Based upon a brief historical view, the typical features of plant secondary metabolism and its role in chemical interactions between plants and their environment are discussed. Facts and arguments are presented favouring the hypothesis that secondary metabolism evolved under the selection pressure of a competitive environment. The high degree of chemical freedom of secondary metabolism which, in contrast to primary metabolism, allows structural modifications with almost no restrictions, is stressed as mechanistic basis for the generation of chemical diversity. Biochemical and physiological properties of secondary metabolism are in accordance with such a view. It is suggested that the great chemical diversity and intraspecific variability of secondary metabolism is the result of processes of natural selection which act upon highly variable chemical structures. This view is exemplified by the pyrrolizidine alkaloids, a typical class of secondary compounds.  相似文献   

4.
Molecular alterations leading to genome instability play a key role in tumor development. The basic causes of genetic instability of tumor cells are considered, including distorted regulation of the intracellular level of endogenous mutagens, in particular, reactive oxygen species; impaired fidelity of DNA replication and mitotic chromosome segregation; defects in DNA repair systems; and inactivation of cell-cycle checkpoints, which arrest proliferation of abnormal cells. The review discusses the causes of the tissue specificity of carcinogenesis due to genetic instability, as well as prospects of developing new means to control tumor growth via diminishing genome instability or using defects in the control of genome integrity for selective elimination of neoplastic cells.  相似文献   

5.
6.
Coral bleaching: causes and consequences   总被引:1,自引:0,他引:1  
Brown  B. E. 《Coral reefs (Online)》1997,16(1):S129-S138
It has been over 10 years since the phenomenon of extensive coral bleaching was first described. In most cases bleaching has been attributed to elevated temperature, but other instances involving high solar irradiance, and sometimes disease, have also been documented. It is timely, in view of our concern about worldwide reef condition, to review knowledge of physical and biological factors involved in bleaching, the mechanisms of zooxanthellae and pigment loss, and the ecological consequences for coral communities. Here we evaluate recently acquired data on temperature and irradiance-induced bleaching, including long-term data sets which suggest that repeated bleaching events may be the consequence of a steadily rising background sea temperature that will in the future expose corals to an increasingly hostile environment. Cellular mechanisms of bleaching involve a variety of processes that include the degeneration of zooxanthellae in situ, release of zooxanthellae from mesenterial filaments and release of algae within host cells which become detached from the endoderm. Photo-protective defences (particularly carotenoid pigments) in zooxanthellae are likely to play an important role in limiting the bleaching response which is probably elicited by a combination of elevated temperature and irradiance in the field. The ability of corals to respond adaptively to recurrent bleaching episodes is not known, but preliminary evidence suggests that phenotypic responses of both corals and zooxanthellae may be significant.  相似文献   

7.
Coral bleaching: causes and consequences   总被引:13,自引:11,他引:13  
《Coral reefs (Online)》1997,16(5):S129-S138
  相似文献   

8.
V Lundblad 《Current biology : CB》2001,11(23):R957-R960
Recent studies in yeast have shed light on the molecular mechanisms by which telomere dysfunction leads to chromosome fusions. Furthermore, examination of the consequences of telomerase loss in mice suggests that only a few critically short telomeres may be sufficient to promote genomic instability.  相似文献   

9.
Within the last decade, a number of nucleic acid-based gene targeting strategies have been developed with the ultimate goal to cure human genetic disorders caused by mutations. Thus far, site-directed gene targeting is the only procedure that can make predefined alterations in the genome. The advantage of this approach is that expression of the corrected gene is regulated in the same way as a normal gene. In addition, targeted specific mutations can be made in the genome for functional analysis of proteins. Several approaches, including chimeric RNA-DNA oligonucleotides, short single-stranded oligonucleotides, small fragment homologous replacements, and triple-helix-forming oligonucleotides have been used for targeted modification of the genome. Due to the absence of standardized assays and mechanistic studies in the early developmental stages of oligonucleotide-directed gene alteration, it has been difficult to explain the large variations and discrepancies reported. Here, we evaluate the progress in the field, summarize the achievements in understanding the molecular mechanism, and outline the perspective for the future development. This review will emphasize the importance of reliable, sensitive and standardized assays to measure frequencies of gene repair and the use of these assays in mechanistic studies. Such studies have become critical for understanding the gene repair process and setting realistic expectations on the capability of this technology. The conventionally accepted but unproven dogmas of the mechanism of gene repair are challenged and alternative points of view are presented. Another important focus of this review is the development of general selection procedures that are required for practical application of this technology.  相似文献   

10.
11.
12.
Today, we are witnessing changes in the spatial distribution and abundance of many species, including ticks and their associated pathogens. Evidence that these changes are primarily due to climate change, habitat modifications, and the globalisation of human activities are accumulating. Changes in the distribution of ticks and their invasion into new regions can have numerous consequences including modifications in their ecological characteristics and those of endemic species, impacts on the dynamics of local host populations and the emergence of human and livestock disease. Here, we review the principal causes for distributional shifts in tick populations and their consequences in terms of the ecological attributes of the species in question (i.e. phenotypic and genetic responses), pathogen transmission and disease epidemiology. We also describe different methodological approaches currently used to assess and predict such changes and their consequences. We finish with a discussion of new research avenues to develop in order to improve our understanding of these host–vector–pathogen interactions in the context of a changing world.  相似文献   

13.
14.

Background

The amount of DNA comprising the genome of an organism (its genome size) varies a remarkable 40 000-fold across eukaryotes, yet most groups are characterized by much narrower ranges (e.g. 14-fold in gymnosperms, 3- to 4-fold in mammals). Angiosperms stand out as one of the most variable groups with genome sizes varying nearly 2000-fold. Nevertheless within angiosperms the majority of families are characterized by genomes which are small and vary little. Species with large genomes are mostly restricted to a few monocots families including Orchidaceae.

Scope

A survey of the literature revealed that genome size data for Orchidaceae are comparatively rare representing just 327 species. Nevertheless they reveal that Orchidaceae are currently the most variable angiosperm family with genome sizes ranging 168-fold (1C = 0·33–55·4 pg). Analysing the data provided insights into the distribution, evolution and possible consequences to the plant of this genome size diversity.

Conclusions

Superimposing the data onto the increasingly robust phylogenetic tree of Orchidaceae revealed how different subfamilies were characterized by distinct genome size profiles. Epidendroideae possessed the greatest range of genome sizes, although the majority of species had small genomes. In contrast, the largest genomes were found in subfamilies Cypripedioideae and Vanilloideae. Genome size evolution within this subfamily was analysed as this is the only one with reasonable representation of data. This approach highlighted striking differences in genome size and karyotype evolution between the closely related Cypripedium, Paphiopedilum and Phragmipedium. As to the consequences of genome size diversity, various studies revealed that this has both practical (e.g. application of genetic fingerprinting techniques) and biological consequences (e.g. affecting where and when an orchid may grow) and emphasizes the importance of obtaining further genome size data given the considerable phylogenetic gaps which have been highlighted by the current study.Key words: AFLP, C-value, chromosome, evolution, genome size, guard cell size, Orchidaceae, Robertsonian fission, Robertsonian fusion  相似文献   

15.
Prolonged postfledging care is a commonly observed behaviorin many cooperatively breeding species and has been shown toprovide young with both survival and developmental benefits.However, the causes of intraspecific variation in postfledgingcare and the consequences of this variation on the developmentof young remain unclear. Here we investigate factors affectingthe duration of postfledging care in the cooperatively breedingpied babbler (Turdoides bicolor). We show that the durationof care is variable (40–97 days) and is determined primarilyby the cost of care. Adults in groups with a low adult:fledglingratio were unable to maintain body mass during the period ofchick provisioning and subsequently ceased care of young earlier.This had a strong influence on offspring development: fledglingsthat received longer periods of care attained higher foragingefficiency and body mass than their counterparts at 6 monthsof age. The duration of postfledging care also had long-termeffects, with individuals that received longer periods of postfledgingcare more likely to successfully disperse from their natal group.This had important fitness implications as successful dispersersbecame reproductively active at an earlier age than their "failed-disperser"counterparts. These findings highlight the importance of consideringlong-term influences when assessing the benefits of prolongedpostfledging care on offspring fitness and development in cooperativesocieties.  相似文献   

16.
Genotyping errors: causes, consequences and solutions   总被引:10,自引:0,他引:10  
Although genotyping errors affect most data and can markedly influence the biological conclusions of a study, they are too often neglected. Errors have various causes, but their occurrence and effect can be limited by considering these causes in the production and analysis of the data. Procedures that have been developed for dealing with errors in linkage studies, forensic analyses and non-invasive genotyping should be applied more broadly to any genetic study. We propose a protocol for estimating error rates and recommend that these measures be systemically reported to attest the reliability of published genotyping studies.  相似文献   

17.
Partial migration, where only some individuals from a population migrate, has been widely reported in a diverse range of animals. In this paper, what is known about the causes and consequences of partial migration in fishes is reviewed. Firstly, the ultimate and proximate drivers of partial migration are reflected upon: what ecological factors can shape the evolution of migratory dimorphism? How is partial migration maintained over evolutionary timescales? What proximate mechanisms determine whether an individual is migratory or remains resident? Following this, the consequences of partial migration are considered, in an ecological and evolutionary context, and also in an applied sense. Here it is argued that understanding the concept of partial migration is crucial for fisheries and ecosystem managers, and can provide information for conservation strategies. The review concludes with a reflection on the future opportunities in this field, and the avenues of research that are likely to be fruitful to shed light on the enduring puzzle of partial migration in fishes.  相似文献   

18.
19.
20.
The cellular level analysis of 720 clinically persons with cytogenetic abnormalities has been performed in this study. Of them 25% showed an increased number of cells with cytogenetic abnormalities. Repeated examination of these patients allowed to "eliminate" sporadic cases of genome instability from the given group. The remaining, 30% of cases, had reliable decrease in excision repair and significant changes in immunoreactivity. At the same time a decrease of activity of DNA-repair synthesis was noticed in donors with a higher number of cells with cytogenetic aberrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号