首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated the effects of a 16-h protocol of heavy intermittent exercise on the intrinsic activity and protein and isoform content of skeletal muscle Na(+)-K(+)-ATPase. The protocol consisted of 6 min of exercise performed once per hour at approximately 91% peak aerobic power (Vo(2 peak)) with tissue sampling from vastus lateralis before (B) and immediately after repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Eleven untrained volunteers with a Vo(2 peak) of 44.3 +/- 2.3 ml x kg(-1) x min(-1) participated in the study. Maximal Na(+)-K(+)-ATPase activity (V(max), in nmol x mg protein(-1) x h(-1)) as measured by the 3-O-methylfluorescein K(+)-stimulated phosphatase assay was reduced (P < 0.05) by approximately 15% with exercise regardless of the number of repetitions performed. In addition, V(max) at R9 and R16 was lower (P < 0.05) than at R1 and R2. Vanadate-facilitated [(3)H]ouabain determination of Na(+)-K(+)-ATPase content (maximum binding capacity, pmol/g wet wt), although unaltered by exercise, increased (P < 0.05) 8.3% by R9 with no further increase observed at R16. Assessment of relative changes in isoform abundance measured at B as determined by quantitative immunoblotting showed a 26% increase (P < 0.05) in the alpha(2)-isoform by R2 and a 29% increase in alpha(3) by R9. At R16, beta(3) was lower (P < 0.05) than at R2 and R9. No changes were observed in alpha(1), beta(1), or beta(2). It is concluded that repeated sessions of heavy exercise, although resulting in increases in the alpha(2)- and alpha(3)-isoforms and decreases in beta(3)-isoform, also result in depression in maximal catalytic activity.  相似文献   

2.
We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.  相似文献   

3.
The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.  相似文献   

4.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

5.
6.
The Na(+)-K(+)-ATPase plays an important role in the maintenance of electrolyte balance in the working muscle and thus may contribute to endurance performance. This study aimed to investigate the associations between genetic variants at the Na(+)-K(+)-ATPase alpha2 locus and the response (Delta) of maximal oxygen consumption (VO(2 max)) and maximal power output (W(max)) to 20 wk of endurance training in 472 sedentary Caucasian subjects from 99 families. VO(2 max) and W(max) were measured during two maximal cycle ergometer exercise tests before and again after the training program, and restriction fragment length polymorphisms at the Na(+)-K(+)-ATPase alpha2 (exons 1 and 21-22 with Bgl II) gene were typed. Sibling-pair linkage analysis revealed marginal evidence for linkage between the alpha2 haplotype and DeltaVO(2 max) (P = 0.054) and stronger linkages between the alpha2 exon 21-22 marker (P = 0.005) and alpha2 haplotype (P = 0.003) and DeltaW(max). In the whole cohort, DeltaVO(2 max) in the 3.3-kb homozygotes of the exon 1 marker (n = 5) was 41% lower than in the 8.0/3.3-kb heterozygotes (n = 87) and 48% lower than in the 8.0-kb homozygotes (n = 380; P = 0.018, adjusted for age, gender, baseline VO(2 max), and body weight). Among offspring, 10.5/10.5-kb homozygotes (n = 14) of the exon 21-22 marker showed a 571 +/- 56 (SE) ml O(2)/min increase in VO(2 max), whereas the increases in the 10.5/4.3-kb (n = 93) and 4.3/4.3-kb (n = 187) genotypes were 442 +/- 22 and 410 +/- 15 ml O(2)/min, respectively (P = 0.017). These data suggest that genetic variation at the Na(+)-K(+)-ATPase alpha2 locus influences the trainability of VO(2 max) in sedentary Caucasian subjects.  相似文献   

7.
This study was designed to determine whether chronic heart failure (CHF) results in changes in Na(+)-K(+)-ATPase properties in heart and skeletal muscles of different fiber-type composition. Adult rats were randomly assigned to a control (Con; n = 8) or CHF (n = 8) group. CHF was induced by ligation of the left main coronary artery. Examination of Na(+)-K(+)-ATPase activity (means +/- SE) 12 wk after the ligation measured, using the 3-O-methylfluorescein phosphatase assay (3-O-MFPase), indicated higher (P < 0.05) levels in soleus (Sol) (250 +/- 13 vs. 179 +/- 18 nmol.mg protein(-1).h(-1)) and lower (P < 0.05) levels in diaphragm (Dia) (200 +/- 12 vs. 272 +/- 27 nmol.mg protein(-1).h(-1)) and left ventricle (LV) (760 +/- 62 vs. 992 +/- 16 nmol.mg protein(-1).h(-1)) in CHF compared with Con, respectively. Na(+)-K(+)-ATPase protein content, measured by the [(3)H]ouabain binding technique, was higher (P < 0.05) in white gastrocnemius (WG) (166 +/- 12 vs. 135 +/- 7.6 pmol/g wet wt) and lower (P < 0.05) in Sol (193 +/- 20 vs. 260 +/- 8.6 pmol/g wet wt) and LV (159 +/- 10 vs. 221 +/- 10 pmol/g wet wt) in CHF compared with Con, respectively. Isoform content in CHF, measured by Western blot techniques, showed both increases (WG; P < 0.05) and decreases (Sol; P < 0.05) in alpha(1). For alpha(2), only increases [red gastrocnemius (RG), Sol, and Dia; P < 0.05] occurred. The beta(2)-isoform was decreased (LV, Sol, RG, and WG; P < 0.05) in CHF, whereas the beta(1) was both increased (WG and Dia; P < 0.05) and decreased (Sol and LV; P < 0.05). For beta(3), decreases (P < 0.05) in RG were observed in CHF, whereas no differences were found in Sol and WG between CHF and Con. It is concluded that CHF results in alterations in Na(+)-K(+)-ATPase that are muscle specific and property specific. Although decreases in Na(+)-K(+)-ATPase content would appear to explain the lower 3-O-MFPase in the LV, such does not appear to be the case in skeletal muscles where a dissociation between these properties was observed.  相似文献   

8.
The present study tested the hypothesis that exercise with a large compared with a small active muscle mass results in a higher contraction-induced increase in Na(+)-K(+)-ATPase mRNA expression due to greater hormonal responses. Furthermore, the relative abundance of Na(+)-K(+)-ATPase subunit alpha(1), alpha(2), alpha(3), alpha(4), beta(1), beta(2), and beta(3) mRNA in human skeletal muscle was investigated. On two occasions, eight subjects performed one-legged knee extension exercise (L) or combined one-legged knee extension and bilateral arm cranking (AL) for 5.00, 4.25, 3.50, 2.75, and 2.00 min separated by 3 min of rest. Leg exercise power output was the same in AL and L, but heart rate at the end of each exercise interval was higher in AL compared with L. One minute after exercise, arm venous blood lactate was higher in AL than in L. A higher level of blood epinephrine and norepinephrine was evident 3 min after exercise in AL compared with L. Nevertheless, none of the exercise-induced increases in alpha(1), alpha(2), beta(1), and beta(3) mRNA expression levels were higher in AL compared with L. The most abundant Na(+)-K(+)-ATPase subunit at the mRNA level was beta(1), which was expressed 3.4 times than alpha(2). Expression of alpha(1), beta(2), and beta(3) was less than 5% of the alpha(2) expression, and no reliable detection of alpha(3) and alpha(4) was possible. In conclusion, activation of additional muscle mass does not result in a higher exercise-induced increase in Na(+)-K(+)-ATPase subunit-specific mRNA.  相似文献   

9.
Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na(+)-K(+)-ATPase content, whereas fatiguing contractions reduce Na(+)-K(+)-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na(+)-K(+)-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K(+) regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL (n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O(2) fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude approximately 600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na(+)-K(+)-ATPase activity [K(+)-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase)] and Na(+)-K(+)-ATPase content ([(3)H]ouabain binding sites). 3-O-MFPase activity was decreased by -2.9 +/- 2.6% in LHTL (P < 0.05) and was depressed immediately after exercise (P < 0.05) similarly in Con and LHTL (-13.0 +/- 3.2 and -11.8 +/- 1.5%, respectively). Plasma K(+) concentration during exercise was unchanged by LHTL; [(3)H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL (P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na(+)-K(+)-ATPase activity. However, the small LHTL-induced depression of 3-O-MFPase activity was insufficient to adversely affect either K(+) regulation or total work performed.  相似文献   

10.
This study investigated whether fatiguing dynamic exercise depresses maximal in vitro Na(+)-K(+)-ATPase activity and whether any depression is attenuated with chronic training. Eight untrained (UT), eight resistance-trained (RT), and eight endurance-trained (ET) subjects performed a quadriceps fatigue test, comprising 50 maximal isokinetic contractions (180 degrees /s, 0.5 Hz). Muscle biopsies (vastus lateralis) were taken before and immediately after exercise and were analyzed for maximal in vitro Na(+)-K(+)-ATPase (K(+)-stimulated 3-O-methylfluoroscein phosphatase) activity. Resting samples were analyzed for [(3)H]ouabain binding site content, which was 16.6 and 18.3% higher (P < 0.05) in ET than RT and UT, respectively (UT 311 +/- 41, RT 302 +/- 52, ET 357 +/- 29 pmol/g wet wt). 3-O-methylfluoroscein phosphatase activity was depressed at fatigue by -13.8 +/- 4.1% (P < 0.05), with no differences between groups (UT -13 +/- 4, RT -9 +/- 6, ET -22 +/- 6%). During incremental exercise, ET had a lower ratio of rise in plasma K(+) concentration to work than UT (P < 0.05) and tended (P = 0.09) to be lower than RT (UT 18.5 +/- 2.3, RT 16.2 +/- 2.2, ET 11.8 +/- 0.4 nmol. l(-1). J(-1)). In conclusion, maximal in vitro Na(+)-K(+)-ATPase activity was depressed with fatigue, regardless of training state, suggesting that this may be an important determinant of fatigue.  相似文献   

11.
The study investigated the hypothesis that three consecutive days of prolonged cycle exercise would result in a sustained reduction in the Ca(2+)-cycling properties of the vastus lateralis in the absence of changes in the sarcoplasmic (endoplasmic) reticulum Ca(2+)-ATPase (SERCA) protein. Tissue samples were obtained at preexercise (Pre) and postexercise (Post) on day 1 (E1) and day 3 (E3) and during recovery day 1 (R1), day 2 (R2), and day 3 (R3) in 12 active but untrained volunteers (age 19.2 +/- 0.27 yr; mean +/- SE) and analyzed for changes (nmol.mg protein(-1).min(-1)) in maximal Ca(2+)-ATPase activity (V(max)), Ca(2+) uptake and Ca(2+) release (phase 1 and phase 2), and SERCA isoform expression (SERCA1a and SERCA2a). At E1, reductions (P < 0.05) from Pre to Post in V(max) (150 +/- 7 vs. 121 +/- 7), Ca(2+) uptake (7.79 +/- 0.28 vs. 5.71 +/- 0.33), and both phases of Ca(2+) release (phase 1, 20.3 +/- 1.3 vs. 15.2 +/- 1.1; phase 2, 7.70 +/- 0.60 vs. 4.99 +/- 0.48) were found. In contrast to V(max), which recovered at Pre E3 and then remained stable at Post E3 and throughout recovery, Ca(2+) uptake remained depressed (P < 0.05) at E3 Pre and Post and at R1 as did phase 2 of Ca(2+) release. Exercise resulted in an increase (P < 0.05) in SERCA1a (14% at R2) but not SERCA2a. It is concluded that rapidly adapting mechanisms protect V(max) following the onset of regular exercise but not Ca(2+) uptake and Ca(2+) release.  相似文献   

12.
The aim of this study was to determine whether changes in protein content and/or gene expression of Na+-K+-ATPase subunits underlie its decreased enzyme activity during ischemia and reperfusion. We measured protein and mRNA subunit levels in isolated rat hearts subjected to 30 min of ischemia and 30 min of reperfusion (I/R). The effect of ischemic preconditioning (IP), induced by three cycles of ischemia and reperfusion (10 min each), was also assessed on the molecular changes in Na+-K+-ATPase subunit composition due to I/R. I/R reduced the protein levels of the alpha2-, alpha3-, beta1-, and beta2-isoforms by 71%, 85%, 27%, and 65%, respectively, whereas the alpha1-isoform was decreased by <15%. A similar reduction in mRNA levels also occurred for the isoforms of Na+-K+-ATPase. IP attenuated the reduction in protein levels of Na+-K+-ATPase alpha2-, alpha3-, and beta2-isoforms induced by I/R, without affecting the alpha1- and beta1-isoforms. Furthermore, IP prevented the reduction in mRNA levels of Na+-K+-ATPase alpha2-, alpha3-, and beta1-isoforms following I/R. Similar alterations in protein contents and mRNA levels for the Na+/Ca2+ exchanger were seen due to I/R as well as IP. These findings indicate that remodeling of Na+-K+-ATPase may occur because of I/R injury, and this may partly explain the reduction in enzyme activity in ischemic heart disease. Furthermore, IP may produce beneficial effects by attenuating the remodeling of Na+-K+-ATPase and changes in Na+/Ca2+ exchanger in hearts after I/R.  相似文献   

13.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

14.
The mechanisms responsible for the decrements in exercise performance in chronic heart failure (CHF) remain poorly understood, but it has been suggested that sarcolemmal alterations could contribute to the early onset of muscular fatigue. Previously, our laboratory demonstrated that the maximal number of ouabain binding sites (B(max)) is reduced in the skeletal muscle of rats with CHF (Musch TI, Wolfram S, Hageman KS, and Pickar JG. J Appl Physiol 92: 2326-2334, 2002). These reductions may coincide with changes in the Na(+)-K(+)-ATPase isoform (alpha and beta) expression. In the present study, we tested the hypothesis that reductions in B(max) would coincide with alterations in the alpha- and beta-subunit expression of the sarcolemmal Na(+)-K(+)-ATPase of rats with CHF. Moreover, we tested the hypothesis that exercise training would increase B(max) along with producing significant changes in alpha- and beta-subunit expression. Rats underwent a sham operation (sham; n = 10) or a surgically induced myocardial infarction followed by random assignment to either a control (MI; n = 16) or exercise training group (MI-T; n = 16). The MI-T rats performed exercise training (ET) for 6-8 wk. Hemodynamic indexes demonstrated that MI and MI-T rats suffered from severe left ventricular dysfunction and congestive CHF. Maximal oxygen uptake (Vo(2 max)) and endurance capacity (run time to fatigue) were reduced in MI rats compared with sham. B(max) in the soleus and plantaris muscles and the expression of the alpha(2)-isoform of the Na(+)-K(+)-ATPase in the red portion of the gastrocnemius (gastrocnemius(red)) muscle were reduced in MI rats. After ET, Vo(2 max) and run time to fatigue were increased in the MI-T group of rats. This coincided with increases in soleus and plantaris B(max) and the expression of the alpha(2)-isoform in the gastrocnemius(red) muscle. In addition, the expression of the beta(2)-isoform of the gastrocnemius(red) muscle was increased in the MI-T rats compared with their sedentary counterparts. This study demonstrates that CHF-induced alterations in skeletal muscle Na(+)-K(+)-ATPase, including B(max) and isoform expression, can be partially reversed by ET.  相似文献   

15.
16.
The purpose of this study was to investigate the hypothesis that muscle Na+-K+-ATPase activity is directly related to Na+-K+-ATPase content and the content of the alpha2-catalytic isoform in muscles of different fiber-type composition. To investigate this hypothesis, tissue was sampled from soleus (Sol), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus (EDL) muscles at rest from 38 male Wistar rats weighing 413 +/- 6.0 g (mean +/- SE). Na+-K+-ATPase activity was determined in homogenates (Hom) and isolated crude membranes (CM) by the regenerating ouabain-inhibitable hydrolytic activity assay (ATPase) and the 3-O-methylfluorescein K+-stimulated phosphatase (3-O-MFPase) assay in vitro. In addition, Na+-K+-ATPase content (Bmax) and the distribution of alpha1-, alpha2-, beta1-, and beta2-isoforms were determined by [3H]ouabain binding and Western blot, respectively. For the ATPase assay, differences (P < 0.05) in enzyme activity between muscles were observed in Hom (EDL > WG) and in CM (Sol > EDL = WG). For the 3-O-MFPase assay, differences (P < 0.05) were also found for Hom (Sol > RG = EDL > WG) and CM (Sol = WG > RG). For Bmax, differences in the order of RG = EDL > Sol = WG (P < 0.05) were observed. Isoform distribution was similar between Hom and CM and indicated in CM, a greater density (P < 0.05) of alpha1 in Sol than WG and EDL (P < 0.05), but more equal distribution of alpha2 between muscles. The beta1 was greater (P < 0.05) in Sol and RG, and the beta2 was greater in EDL and WG (P < 0.05). Over all muscles, the correlation (r) between Hom 3-O-MFPase and Bmax was 0.45 (P < 0.05) and between Hom alpha2 and Bmax, 0.59 (P < 0.05). The alpha1 distribution correlated to Hom 3-O-MFPase (r = 0.79, P < 0.05) CM ATPase (r = 0.69, P < 0.005) and CM 3-O-MFPase activity (r = 0.32, P < 0.05). The alpha2 distribution was not correlated with any of the Na+-K+-ATPase activity measurements. The results indicate generally poor relationships between activity and total pump content and alpha2 isoform content of the Na+-K+-ATPase. Several factors, including the type of preparation and the type of assay, appear important in this regard.  相似文献   

17.
This study examined the effect of two different intense exercise training regimens on skeletal muscle ion transport systems, performance, and metabolic response to exercise. Thirteen subjects performed either sprint training [ST; 6-s sprints (n = 6)], or speed endurance training [SET; 30-s runs approximately 130% Vo(2 max), n = 7]. Training in the SET group provoked higher (P < 0.05) plasma K(+) levels and muscle lactate/H(+) accumulation. Only in the SET group was the amount of the Na(+)/H(+) exchanger isoform 1 (31%) and Na(+)-K(+)-ATPase isoform alpha(2) (68%) elevated (P < 0.05) after training. Both groups had higher (P < 0.05) levels of Na(+)-K(+)-ATPase beta(1)-isoform and monocarboxylate transporter 1 (MCT1), but no change in MCT4 and Na(+)-K(+)-ATPase alpha(1)-isoform. Both groups had greater (P < 0.05) accumulation of lactate during exhaustive exercise and higher (P < 0.05) rates of muscle lactate decrease after exercise. The ST group improved (P < 0.05) sprint performance, whereas the SET group elevated (P < 0.05) performance during exhaustive continuous treadmill running. Improvement in the Yo-Yo intermittent recovery test was larger (P < 0.05) in the SET than ST group (29% vs. 10%). Only the SET group had a decrease (P < 0.05) in fatigue index during a repeated sprint test. In conclusion, turnover of lactate/H(+) and K(+) in muscle during exercise does affect the adaptations of some but not all related muscle ion transport proteins with training. Adaptations with training do have an effect on the metabolic response to exercise and specific improvement in work capacity.  相似文献   

18.
To investigate the effects of hypoxia and incremental exercise on muscle contractility, membrane excitability, and maximal Na(+)-K(+)-ATPase activity, 10 untrained volunteers (age = 20 +/- 0.37 yr and weight = 80.0 +/- 3.54 kg; +/- SE) performed progressive cycle exercise to fatigue on two occasions: while breathing normal room air (Norm; Fi(O(2)) = 0.21) and while breathing a normobaric hypoxic gas mixture (Hypox; Fi(O(2)) = 0.14). Muscle samples extracted from the vastus lateralis before exercise and at fatigue were analyzed for maximal Na(+)-K(+)-ATPase (K(+)-stimulated 3-O-methylfluorescein phosphatase) activity in homogenates. A 32% reduction (P < 0.05) in Na(+)-K(+)-ATPase activity was observed (90.9 +/- 7.6 vs. 62.1 +/- 6.4 nmol.mg protein(-1).h(-1)) in Norm. At fatigue, the reductions in Hypox were not different (81 +/- 5.6 vs. 57.2 +/- 7.5 nmol.mg protein(-1).h(-1)) from Norm. Measurement of quadriceps neuromuscular function, assessed before and after exercise, indicated a generalized reduction (P < 0.05) in maximal voluntary contractile force (MVC) and in force elicited at all frequencies of stimulation (10, 20, 30, 50, and 100 Hz). In general, no differences were observed between Norm and Hypox. The properties of the compound action potential, amplitude, duration, and area, which represent the electromyographic response to a single, supramaximal stimulus, were not altered by exercise or oxygen condition when assessed both during and after the progressive cycle task. Progressive exercise, conducted in Hypox, results in an inhibition of Na(+)-K(+)-ATPase activity and reductions in MVC and force at different frequencies of stimulation; these results are not different from those observed with Norm. These changes occur in the absence of reductions in neuromuscular excitability.  相似文献   

19.
Acute regulation of the Na(+)-K(+)-ATPase activity in rat soleus muscle was investigated in response to 15 and 90 min of electrically induced contractile activity (500-ms trains at 30 Hz every 1.5 s). Kinetic measurements of Na(+)-K(+)-ATPase activity, assessed by the 3-O-methylfluorescein K(+)-stimulated phosphatase assay (3-O-MFP), were performed on crude homogenates (Hom) and on tissue separated into two membrane fractions, the sarcolemmal/particulate (SLP) and endosomal (En), in both stimulated (Stim) and contralateral control (Con) muscles. Maximal 3-O-MFP activity (V(max), nmol.mg protein(-1).h(-1)) was elevated (P < 0.05) in Stim by 40% and by 53% in Hom and by 37 and 40% in SLP at 15 and 90 min, respectively. The 38% increase (P < 0.05) in the alpha(2)-isoform subunit distribution in SLP at 15 min, as assessed by quantitative immunoblotting, persisted at 90 min, whereas for En a 42% decrease (P < 0.05) was observed only at 15 min. For the alpha(1)-subunit at 15 min, a 27% decrease (P < 0.05) was observed in En, whereas the 13% increase observed in SLP was not significant (P = 0.08). At 90 min, alpha(1) was increased (P < 0.05) by 14% in SLP and by 29% in En. No changes were observed in beta(1)-subunit distribution in En and SLP regardless of time of stimulation. Immunoprecipitation with antiphosphotyrosine antibody and quantitative immunoblotting with alpha(1)- and alpha(2)-antibodies indicated increases (P < 0.05) in tyrosine phosphorylation of 51% in alpha(2) at 15 min only. These results suggest that the increases in V(max) during contractile activity are mediated both by increased phosphorylation and by translocation of the enzyme to the plasma membrane.  相似文献   

20.
Six human subjects performed one-legged knee extensor exercise (90 +/- 4 W) until fatigue (exercise time 4.6 +/- 0.8 min). Needle biopsies were obtained from vastus lateralis muscle before and immediately after exercise. Production of giant sarcolemmal vesicles from the biopsy material was used as a membrane purification procedure, and Na(+)-K(+) pump alpha- and beta-subunits were quantified by Western blotting. Exercise significantly increased (P < 0.05) the vesicular membrane content of the alpha(2)-, total alpha-, and beta(1)-subunits by 70 +/- 29, 35 +/- 10, and 26 +/- 5%, respectively. The membrane content of alpha(1) was not changed by exercise, and the densities of subunits in muscle homogenates were unchanged. The ratio of vesicular to crude muscle homogenate content of the alpha(2)-, total alpha-, and beta(1)-subunits was elevated during exercise by 67 +/- 33 (P < 0.05), 23 +/- 6 (P < 0.05), and 40 +/- 14% (P = 0.06), respectively. It is concluded that translocation of subunits is an important mechanism involved in the short time upregulation of the Na(+)-K(+) pumps in association with human muscle activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号