首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(4):409-415
Autophagy is an intracellular bulk degradation process whereby cytoplasmic proteins and organelles are degraded and recycled through lysosomes. In the heart, autophagy plays a homeostatic role at basal levels, and the absence of autophagy causes cardiac dysfunction and the development of cardiomyopathy. Autophagy is induced during myocardial ischemia and further enhanced by reperfusion. Although induction of autophagy during the ischemic phase is protective, further enhancement of autophagy during the reperfusion phase may induce cell death and appears to be detrimental. In this review we discuss the functional significance of autophagy and the underlying signaling mechanism in the heart during ischemia/reperfusion.  相似文献   

2.
Chaperone-mediated autophagy (CMA) is a selective lysosomal pathway for the degradation of cytosolic proteins. We review in this work some of the recent findings on this pathway regarding the molecular mechanisms that contribute to substrate targeting, binding and translocation across the lysosomal membrane. We have placed particular emphasis on the critical role that changes in the lipid composition of the lysosomal membrane play in the regulation of CMA, as well as the modulatory effect of other novel CMA components. In the second part of this review, we describe the physiological relevance of CMA and its role as one of the cellular mechanisms involved in the response to stress. Changes with age in CMA activity and the contribution of failure of CMA to the phenotype of aging and to the pathogenesis of several age-related pathologies are also described.  相似文献   

3.
The role of autophagy during ischemia/reperfusion   总被引:1,自引:0,他引:1  
Sadoshima J 《Autophagy》2008,4(4):402-403
Ischemia (hypoxia)/reperfusion (I/R) primarily caused by atherosclerosis and thrombosis, induces tissue injury and organ malfunction, and is therefore, an important clinical problem. Understanding the cellular mechanisms of enhancing cell survival or preventing cell death during I/R could lead to development of strategies to treat this health problem.  相似文献   

4.
5.
Plasma endothelin levels during myocardial ischemia and reperfusion   总被引:6,自引:0,他引:6  
Endothelin, an endothelium-derived vasoconstrictive peptide, has a strong potency of coronary artery constriction. However, the role of endogeneous endothelin under pathophysiological conditions has not yet been known. In this study, we examined plasma endothelin concentration in dogs with myocardial ischemia and reperfusion. Anesthetized open-chest dogs underwent either 45 minutes occlusion of the left anterior descending coronary artery followed by 3 hours reperfusion, or 4-10 hours of continuous occlusion. Plasma concentration of endothelin from the central vein was measured by the highly sensitive enzyme-immunoassay. Plasma endothelin concentration increased 2.2-fold with the peak level at 60 minutes after release of the ligated artery, but occlusion per se caused no remarkable change. These data suggest that reperfusion of the occluded artery might be needed to increase the plasma concentration of endothelin in case of myocardial infarction.  相似文献   

6.
Ischemia and reperfusion (I/R) injury is associated with extensive loss of cardiac myocytes. Bnip3 is a mitochondrial pro-apoptotic Bcl-2 protein which is expressed in the adult myocardium. To investigate if Bnip3 plays a role in I/R injury, we generated a TAT-fusion protein encoding the carboxyl terminal transmembrane deletion mutant of Bnip3 (TAT-Bnip3DeltaTM) which has been shown to act as a dominant negative to block Bnip3-induced cell death. Perfusion with TAT-Bnip3DeltaTM conferred protection against I/R injury, improved cardiac function, and protected mitochondrial integrity. Moreover, Bnip3 induced extensive fragmentation of the mitochondrial network and increased autophagy in HL-1 myocytes. 3D rendering of confocal images revealed fragmented mitochondria inside autophagosomes. Enhancement of autophagy by ATG5 protected against Bnip3-mediated cell death, whereas inhibition of autophagy by ATG5K130R enhanced cell death. These results suggest that Bnip3 contributes to I/R injury which triggers a protective stress response with upregulation of autophagy and removal of damaged mitochondria.  相似文献   

7.
We have recently shown that autophagy is induced by ischemia and reperfusion in the mouse heart in vivo. Ischemia stimulates autophagy through an AMP activated protein kinase (AMPK)-dependent mechanism, whereas reperfusion after ischemia stimulates autophagy through a Beclin 1-dependent, but AMPK-independent, mechanism. Autophagy plays distinct roles during ischemia and reperfusion: autophagy may be protective during ischemia, whereas it may be detrimental during reperfusion. We will discuss the role of AMPK in mediating autophagy during myocardial ischemia in vivo.  相似文献   

8.
Free fatty acid metabolism during myocardial ischemia and reperfusion   总被引:6,自引:0,他引:6  
Long chain free fatty acids (FFA) are the preferred metabolic substrates of myocardium under aerobic conditions. However, under ischemic conditions long chain FFA have been shown to be harmful both clinically and experimentally. Serum levels of free fatty acids frequently are elevated in patients with myocardial ischemia. The proposed mechanisms of the detrimental effects of free fatty acids include: (1) accumulation of toxic intermediates of fatty acid metabolism, such as long chain acyl-CoA thioesters and long chain acylcarnitines, (2) inhibition of glucose utilization, particularly glycolysis, during ischemia and/or reperfusion, and (3) uncoupling of oxidative metabolism from electron transfer. The relative importance of these mechanisms remains controversial. The primary site of FFA-induced injury appears to be the sarcolemmal and intracellular membranes and their associated enzymes. Inhibitors of free fatty acid metabolism have been shown experimentally to decrease the size of myocardial infarction and lessen postischemic cardiac dysfunction in animal models of regional and global ischemia. The mechanism by which FFA inhibitors improve cardiac function in the postischemic heart is controversial. Whether the effects are dependent on decreased levels of long chain intermediates and/or enhancement of glucose utilization is under investigation. Manipulation of myocardial fatty acid metabolism may prove beneficial in the treatment of myocardial ischemia, particularly during situations of controlled ischemia and reperfusion, such as percutaneous transluminal coronary angioplasty and coronary artery bypass grafting. (Mol Cell Biochem 166: 85-94, 1997)  相似文献   

9.
《Autophagy》2013,9(4):416-421
Autophagy is an important process in the heart which is responsible for the normal turnover of long lived proteins and organelles. Inhibition of autophagy leads to the accumulation of protein aggregates and dysfunctional organelles which can cause cell death. Autophagy occurs at low basal levels under normal conditions in the heart, but is rapidly upregulated in response to stress such as nutrient deprivation, hypoxia, and pressure overload. Autophagy is a prominent feature of myocardial ischemia and reperfusion. Although enhanced autophagy is often seen in dying cardiac myocytes, the functional significance of autophagy under these conditions is not clear. Upregulation of autophagy has been reported to protect cardiac cells against death as well as be the cause of it. Here, we review the evidence that autophagy can have both beneficial and detrimental roles in the myocardium, and discuss potential mechanisms by which autophagy provides protection in cells.  相似文献   

10.
Autophagy is an important process in the heart which is responsible for the normal turnover of long lived proteins and organelles. Inhibition of autophagy leads to the accumulation of protein aggregates and dysfunctional organelles which can cause cell death. Autophagy occurs at low basal levels under normal conditions in the heart, but is rapidly upregulated in response to stress such as nutrient deprivation, hypoxia, and pressure overload. Autophagy is a prominent feature of myocardial ischemia and reperfusion. Although enhanced autophagy is often seen in dying cardiac myocytes, the functional significance of autophagy under these conditions is not clear. Upregulation of autophagy has been reported to protect cardiac cells against death as well as be the cause of it. Here, we review the evidence that autophagy can have both beneficial and detrimental roles in the myocardium, and discuss potential mechanisms by which autophagy provides protection in cells.  相似文献   

11.
Direct monitoring of myoglobin efflux during ischemia and reperfusion has been limited because of inherent sample collection problems in the ischemic region. Recently, the cardiac dialysis technique has offered a powerful method for monitoring myocardial interstitial levels of low-molecular-weight compounds in the cardiac ischemic region. In the present study, we extended the molecular target to high-molecular-weight compounds by use of microdialysis probes with a high-molecular-mass cutoff and monitored myocardial interstitial myoglobin levels. A dialysis probe was implanted in the left ventricular free wall in anesthetized rabbits. The main coronary artery was occluded for 60 or 120 min. We examined the effects of myocardial ischemia and reperfusion on myocardial interstitial myoglobin levels. Interstitial myoglobin increased within 15 min of ischemia and continued to increase during 120 min of ischemia, whereas blood myoglobin increased at 45 min of ischemia. Lactate and myoglobin in the interstitial space increased during the same period. At 60 min of ischemia, reperfusion markedly accelerated interstitial myoglobin release. The interstitial myoglobin level was fivefold higher at 0-15 min of reperfusion than at 60-75 min of coronary occlusion. The dialysis technique permits earlier detection of myoglobin release and separately monitors myoglobin release during ischemia and reperfusion. Myocardial interstitial myoglobin levels can serve as an index of myocardial injury evoked by ischemia or reperfusion.  相似文献   

12.
Impaired microvascular function during myocardial ischemia and reperfusion is associated with recruitment of polymorphonuclear neutrophils (PMN) and has been attributed to decreased bioavailability of nitric oxide (NO). Whereas myeloperoxidase (MPO), a highly abundant, PMN-derived heme protein facilitates oxidative NO consumption and impairs vascular function in animal models of acute inflammation, its capacity to function in this regard during human myocardial ischemia and reperfusion remains unknown. Plasma samples from 30 consecutive patients (61 +/- 14 years, 80% male) presenting with acute myocardial infarction were collected 9 +/- 4 h after vessel recanalization and compared to plasma from healthy control subjects (n = 12). Plasma levels of MPO were higher in patients than in control subjects (1.4 +/- 0.9 vs 0.3 +/- 0.2 ng/mg protein, respectively, p < 0.0001). The addition of hydrogen peroxide to patient plasma resulted in accelerated rates of NO consumption compared to control subjects (0.53 +/- 0.25 vs 0.068 +/- 0.039 nM/s/mg protein, respectively, p < 0.0001). Myocardial tissue from patients with the same pathology revealed intense recruitment of MPO-positive PMN localized along infarct-related vessels as well as diffuse endothelial distribution of non-PMN-associated MPO immunoreactivity. Endothelium-dependent microvascular function, as assessed by an acetylcholine-dependent increase in forearm blood flow in 75 patients with symptomatic coronary artery disease, inversely correlated with MPO plasma levels (r = -0.75, p < 0.005). Plasma from patients undergoing myocardial reperfusion contained increased levels of MPO, which catalytically consumed NO in the presence of H(2)O(2). Given the correlation between intravascular MPO levels and forearm vasomotor function in patients with coronary artery disease, MPO appears to be an important modulator of vasomotor function in inflammatory vascular disease and a potential therapeutic target for treatment.  相似文献   

13.
High mobility group box 1 protein (HMGB1) plays an important role in myocardial ischemia and reperfusion (I/R) injury. Preconditioning of exendin-4 (Ex), a glucagon-like peptide-1 receptor agonist, has been reported to attenuate myocardial I/R injury. The current study investigated whether Ex postconditioning also attenuated myocardial I/R injury and the potential mechanisms. Anesthetized male rats were subjected to ischemia for 30 min and treated with Ex (5 μg/kg, i.v.) 5 min before reperfusion, in the absence and/or presence of exendin (9–39) (an antagonist of glucagon-like peptide-1 receptor, 5 μg/kg, i.v.), followed by reperfusion for 4 h. Lactate dehydrogenase (LDH), creatine kinase (CK), tumor necrosis factor-α, interleukin-6, and infarct size were measured. HMGB1 expression was assessed by immunoblotting. Postconditioning with Ex significantly decreased infarct size and levels of LDH and CK after 4 h reperfusion (all p < 0.05). Ex also significantly inhibited the increase in malondialdehyde level and decreased the level of superoxide dismutase (both p < 0.05). In addition, the increase in HMGB1 expression induced by I/R was significantly attenuated by Ex postconditioning. Administration of exendin (9–39) abolished the protective effect of Ex postconditioning (all p < 0.05). The present study suggests that Ex postconditioning may attenuate myocardial I/R injury, which may in turn be associated with inhibiting inflammation.  相似文献   

14.
The study of ischemia/reperfusion injury included 25 patients in the acute phase of myocardial infarction (19 perfused, 6 remained non-reperfused as evaluated according to the time course of creatine kinase and CK-MB isoenzyme activity) and a control group (21 blood donors). Plasma level of malondialdehyde was followed as a marker of oxidative stress. Shortly after reperfusion (within 90 min), a transient increase of malondialdehyde concentration was detected. The return to the baseline level was achieved 6 h after the onset of therapy. The activity of a free radical scavenger enzyme, plasma glutathione peroxidase (GPx), reached its maximum 90 min after the onset of treatment and returned to the initial value after 18 h. The specificity of the GPx response was confirmed by comparing with both non-reperfused patients and the control group, where no significant increase was detected. The erythrocyte Cu,Zn-superoxide dismutase (SOD) did not exhibit significant changes during the interval studied in perfused patients, probably due to the stability of erythrocyte metabolism. In non-reperfused patients, a decrease of SOD was found during prolonged hypoxia. These results help to elucidate the mechanisms of fast activation of plasma antioxidant system during the reperfusion after myocardial infarction.  相似文献   

15.
We studied the differences between the functional and bioenergetic effects of antioxidants (AOX) administered before or after myocardial ischemia. Sprague-Dawley rat hearts were perfused with a modified Krebs-Henseleit solution and bubbled with 95% O(2)-5% CO(2). The protocol consisted of 10 min of baseline perfusion, 20 min of global ischemia, and 30 min of reperfusion. An AOX, either 1,2-dihydroxybenzene-3,5-disulfonate (Tiron), a superoxide scavenger, or N-acetyl-L-cysteine, was infused during either baseline or reperfusion. An additional group received deferoxamine as a bolus before ischemia. Hearts were freeze-clamped at baseline, at end of ischemia, and at end of reperfusion for analysis of high-energy phosphates. All AOX, when given before ischemia, inhibited recovery of ATP compared with controls. Both Tiron and deferoxamine also inhibited recovery of phosphocreatine. AOX given before ischemia decreased the efficiency of contraction during reperfusion compared with controls. All of the changes in energetics and efficiency brought on by preischemic AOX treatment could be blocked by a preconditioning stimulus. This suggests that reactive oxygen species, which are generated during ischemia, enhance bioenergetic recovery by increasing the efficiency of contraction.  相似文献   

16.
Isolated guinea pig hearts subjected to 25-min total normothermic ischemia and 30-min reperfusion with the initial rate exhibited a great rise in isovolumic diastolic pressure while the contractile function recovered to 34 +/- 4% of initial value. Reperfusion with gradually increased rate from 13% of initial rate to 100% resulted in better recovery of the contractile function--to 54 +/- 3% and markedly less rise in the diastolic pressure. This coincided with 28% less inosine loss. More better recovery of the myocardial contractile function (to 80 +/- 5%) was observed in experiments in which gradual reperfusion was combined with recirculation. In both gradual reperfusion series, the recovery of the heart rate and the contractile function were much delayed during first 5 min reperfusion and were associated with a rise in coronary resistance.  相似文献   

17.
Uncoupling protein 2 (UCP2), located in the mitochondrial inner membrane, is a predominant isoform of UCP that expressed in the heart and other tissues of human and rodent tissues. Nevertheless, its functional role during myocardial ischemia/reperfusion (I/R) is not entirely understood. Ischemic preconditioning (IPC) remarkably improved postischemic functional recovery followed by reduced lactate dehydrogenase (LDH) release with simultaneous upregulation of UCP2 in perfused myocardium. We then investigated the role of UCP2 in IPC-afforded cardioprotective effects on myocardial I/R injury with adenovirus-mediated in vivo UCP2 overexpression (AdUCP2) and knockdown (AdshUCP2). IPC-induced protective effects were mimicked by UCP2 overexpression, while which were abolished with silencing UCP2. Mechanistically, UCP2 overexpression significantly reinforced I/R-induced mitochondrial autophagy (mitophagy), as measured by biochemical hallmarks of mitochondrial autophagy. Moreover, primary cardiomyocytes infected with AdUCP2 increased simulated ischemia/reperfusion (sI/R)-induced mitophagy and therefore reversed impaired mitochondrial function. Finally, suppression of mitophagy with mdivi-1 in cultured cardiomyocytes abolished UCP2-afforded protective effect on sI/R-induced mitochondrial dysfunction and cell death. Our data identify a critical role for UCP2 against myocardial I/R injury through preventing the mitochondrial dysfunction through reinforcing mitophagy. Our findings reveal novel mechanisms of UCP2 in the cardioprotective effects during myocardial I/R.  相似文献   

18.
Zhelong Xu  Juan Zhou 《Biometals》2013,26(6):863-878
As an important trace element, zinc is required for the normal cellular structure and function, and impairment of zinc homeostasis is associated with a variety of health problems including cardiovascular disease. Zinc homeostasis is regulated through zinc transporters, zinc binding molecules, and zinc sensors. Zinc also plays a critical role in cellular signaling. Studies have documented that zinc homeostasis is impaired by ischemia/reperfusion in the heart and zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. Both exogenous and endogenously released zinc may play an important role in cardioprotection against ischemia/reperfusion injury. The goal of this review is to summarize the current understanding of the roles of zinc homeostasis and zinc signaling in myocardial ischemia/reperfusion injury.  相似文献   

19.
A novel application of microdialysis was studied, in which myocardial outflow of amino acids and purines was monitored by intravasal microdialysis in the myocardial venous outflow during ischemia and reperfusion. Microdialysis catheters were introduced into the great cardiac vein, pulmonary artery, and external jugular vein in 20 anesthetized pigs. The left anterior descending artery was occluded in four groups of pigs for 0, 10, 15, and 60 min. Ischemia was followed by 120 min of reperfusion. Microdialysis samples were analyzed for taurine, aspartate, glutamate, hypoxanthine, inosine, and guanosine. Myocardial infarction developed when ischemia exceeded 10 min. Taurine, aspartate, inosine, and guanosine increased early in the great cardiac vein during ischemia. We found the outflow patterns of amino acids and purines to be graded in response to different lengths of ischemia. In this study we have demonstrated a graded outflow of amino acids and purines in response to ischemia and a positive correlation between infarct size and myocardial outflow of amino acids and purines. This could be of value in a clinical setting to quantify the extent of myocardial damage.  相似文献   

20.
Renal ischemia-reperfusion (I/R) injury is inevitable in transplantation, and it results in renal tubular epithelial cells undergoing cell death. We observed an increase in autophagosomes in the tubular epithelial cells of I/R-injured mouse models, and in biopsy specimens from human transplanted kidney. However, it remains unclear whether autophagy functions as a protective pathway, or contributes to I/R-induced cell death. Here, we employed the human renal proximal tubular epithelial cell line HK-2 in order to explore the role of autophagy under hypoxia (1% O2) or activation of reactive oxygen species (500 μM H2O2). When compared to normoxic conditions, 48 h of hypoxia slightly increased LC3-labeled autophagic vacuoles and markedly increased LAMP2-labeled lysosomes. We observed similar changes in the mouse IR-injury model. We then assessed autophagic generation and degradation by inhibiting the downstream lysosomal degradation of autophagic vacuoles using lysosomal protease inhibitor. We found that autophagosomes increased markedly under hypoxia in the presence of lysosomal protease inhibitors, thus suggesting that hypoxia induces high turnover of autophagic generation and degradation. Furthermore, inhibition of autophagy significantly inhibited H2O2-induced cell death. In conclusion, high turnover of autophagy may lead to autophagic cell death during I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号