首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wealth of information on proteins involved in many aspects of disease is encased within formalin‐fixed paraffin‐embedded (FFPE) tissue repositories stored in hospitals worldwide. Recently, access to this “hidden treasure” is being actively pursued by the application of two main extraction strategies: digestion of the entangled protein matrix with generation of tryptic peptides, or decrosslinking and extraction of full‐length proteins. Here, we describe an optimised method for extraction of full‐length proteins from FFPE tissues. This method builds on the classical “antigen retrieval” technique used for immunohistochemistry, and allows generation of protein extracts with elevated and reproducible yields. In model animal tissues, average yields of 16.3 μg and 86.8 μg of proteins were obtained per 80 mm2 tissue slice of formalin‐fixed paraffin‐embedded skeletal muscle and liver, respectively. Protein extracts generated with this method can be used for the reproducible investigation of the proteome with a wide array of techniques. The results obtained by SDS‐PAGE, western immunoblotting, protein arrays, ELISA, and, most importantly, nanoHPLC‐nanoESI‐Q‐TOF MS of FFPE proteins resolved by SDS‐PAGE, are presented and discussed. An evaluation of the extent of modifications introduced on proteins by formalin fixation and crosslink reversal, and their impact on quality of MS results, is also reported.  相似文献   

2.
As we transition from genomics to the challenges of the functional proteome, new tools to explore the expression of proteins within tissue are essential. We have developed a method of transferring proteins from a formalin fixed, paraffin embedded tissues section to a stack of membranes which is then probed with antibodies for detection of individual epitopes. This method converts a traditional tissue section into a multiplex platform for expression profiling. A single tissue section can be transferred to up to ten membranes, each of which is probed with different antibodies, and detected with fluorescent secondary antibodies, and quantified by a microarray scanner. Total protein can be determined on each membrane, hence each antibody has its own normalization. This method works with phospho-specific antibodies as well as antibodies that do not readily work well with paraffin embedded tissue. This novel technique enables archival paraffin embedded tissue to be molecularly profiled in a rapid and quantifiable manner, and reduces the tissue microarray to a form of protein array. This method is a new tool for exploration of the vast archive of formalin fixed, paraffin embedded tissue, as well as a tool for translational medicine.  相似文献   

3.
Fresh or frozen tissue samples will always be the best tissue source for the analysis of nucleic acids and proteins from tissues. However, their long-term storage is expensive and laborious. Much interest has therefore been focused on the question whether the almost infinite resources of formalin fixed and paraffin embedded tissue samples in the archives of pathology and histology departments can be used for research on biomarkers and molecular mechanisms of disease. In recent years the methods and protocols for the extraction of DNA, mRNA, miRNA and proteins from formalin-fixed and paraffin-embedded tissue samples have improved enormously. Especially, the possibilities of analysing DNA and miRNA in FFPE have reached a level that allows their application as a first line approach in the search for biomarkers. In contrast, many questions remain in terms of quantification of mRNA and protein expression levels in formalin-fixed and paraffin-embedded tissue samples. This review gives an overview on current potentials and limitations of the quantification of DNA, miRNA, mRNA and the proteome in FFPE tissue samples. The chemical events during formalin fixation and paraffin embedding and alternatives to formalin fixation are described. In addition, methods and general problems of DNA, miRNA, mRNA and protein extraction and the current knowledge on the feasibility and accuracy of quantitative gene expression analysis in FFPE tissues is summarized.  相似文献   

4.
Xianyin Lai  Bryan P. Schneider 《Proteomics》2014,14(21-22):2623-2627
Because fresh‐frozen tissue samples associated with long‐term clinical data and of rare diseases are often unobtainable at the present time, formalin‐fixed paraffin‐embedded (FFPE) tissue samples are considered a highly valuable resource for researchers. However, protein extraction from FFPE tissues faces challenges of deparaffinization and cross‐link reversion. Current procedures for protein extraction from FFPE tissue require separate steps and toxic solvents, resulting in inconvenience in protein extraction. To overcome these limitations, an integrated method was developed using nontoxic solvents in four types of FFPE tissues. The average amount of proteins from three replicates of bladder, kidney, liver, and lung FFPE tissues were 442.6, 728.9, 736.4, and 694.7 μg with CVs of 7.5, 5.8, 2.4, and 4.5%, respectively. Proteomic analysis showed that 348, 417, 607, and 304 unique proteins were identified and quantified without specification of isoform by a least two peptides from bladder, kidney, liver, and lung FFPE tissue samples, respectively. The analysis of individual protein CV demonstrated that 97–99% of the proteins were quantified with a CV ≤ 30%, verifying the reproducibility of the integrated protein extraction method. In summary, the developed method is high‐yield, reproducible, convenient, simple, low cost, nonvolatile, nonflammable, and nontoxic.  相似文献   

5.
The current transition in cancer therapy from general treatment approaches, based mainly on chemotherapy and radiotherapy, to more directed approaches that aim to inhibit specific molecular targets has brought about new challenges for pathology. In the past, classical assignment of pathology consisted of tumor diagnosis and staging for further therapy decisions; nowadays, pathologists are asked to predict possible therapeutic results by detecting and quantifying therapeutic targets in tumors such as the human epidermal growth factor receptor 2 (HER2). The best approach to analyze such molecular targets is to provide a tumor‐specific protein expression profile prior to therapy. To further elucidate signaling networks underlying cancer development and to identify new targets, it is necessary to implement tools that allow fast, precise, cheap, and simultaneous analysis of many network components while requiring only a small amount of clinical material. Reverse phase protein microarray (RPPA) is a promising technology that meets these requirements while enabling quantitative measurement of proteins. Recently, methods for the extraction of proteins from formalin‐fixed, paraffin‐embedded (FFPE) tissues have become available. In this article, we demonstrate how the use of RPPA to analyze signaling pathways from FFPE tissues may improve quantification of therapeutic targets and diagnostic markers in the near future. J. Cell. Physiol. 225: 364–370, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Antigen retrieval (AR) is a technique that re-exposes epitopes in formalin fixed, paraffin embedded sections and makes them detectable by immunohistochemistry. We compared the effects of two AR procedures, enzyme digestion and microwave heating, on immunostaining of vimentin and desmin in formalin fixed, paraffin embedded tissues. Our results showed that AR is necessary for vimentin and desmin immunostaining in tissues fixed in formalin for more than 48 h. With prolonged fixation times, microwave heating showed better results than enzyme digestion for AR. The same results were obtained using 1% zinc sulfate or Citra Plus solution as retrieval solutions for microwave heating. We recommend microwave heating for AR, because it is easier to use and produces better results compared to enzyme treatment.  相似文献   

7.
Antigen retrieval (AR) is a technique that re-exposes epitopes in formalin fixed, paraffin embedded sections and makes them detectable by immunohistochemistry. We compared the effects of two AR procedures, enzyme digestion and microwave heating, on immunostaining of vimentin and desmin in formalin fixed, paraffin embedded tissues. Our results showed that AR is necessary for vimentin and desmin immunostaining in tissues fixed in formalin for more than 48 h. With prolonged fixation times, microwave heating showed better results than enzyme digestion for AR. The same results were obtained using 1% zinc sulfate or Citra Plus solution as retrieval solutions for microwave heating. We recommend microwave heating for AR, because it is easier to use and produces better results compared to enzyme treatment.  相似文献   

8.
Many of the antigens commonly investigated in histopathology can be enhanced by microwave pretreatment (MWPT) of formalin fixed, paraffin embedded tissue sections. We developed a double labeling method using microwave heating to detect otherwise undetectable nuclear antigens combined.with immunohisto-chemistry (IHC) of cytoplasmic or membranous antigens that do not benefit from MWPT. We used the same primary antibody solutions used in single antibody IHC. The staining technique is based on the alkaline phosphatase anti-alkaline phosphatase (APAAP) and the labeled avidin-biotin (LSAB) methods. Four different protocols were tested, each modifying the sequence of MWPT, APAAP and LSAB staining. In this study Ki67, estrogen receptor, progesterone receptor, c-neu, CD68 and desmin primary antibodies were used in routinely formalin fixed, paraffin embedded tissues of 50 tumor specimens. MWPT followed by LSAB for microwave enhanced antigens and APAAP for antigens that cannot be enhanced by MWPT gave the best double staining results. This method improves characterization of tumor cell features from paraffin embedded tissue and should aid analysis of tumor differentiation, receptor status and nuclear proteins in the single cells in archival tissues.  相似文献   

9.
In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin‐fixed, paraffin‐embedded (FFPE) tissues. However, 2‐D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2‐D PAGE separation and MS identification of full‐length proteins extracted from FFPE skeletal muscle tissue. The 2‐D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2‐D maps of proteins from FFPE tissue following standard mass‐compatible silver staining. Protein spots from both FFPE and frozen tissue 2‐D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2‐D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh‐frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full‐length proteins from FFPE tissues might be suitable to 2‐D PAGE‐MS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological‐fixed tissues.  相似文献   

10.
A fully automatic method for quantification of images of immunohistochemically stained cell nuclei by computing area proportions, is presented. Agarose embedded cultured fibroblasts were fixed, paraffin embedded and sectioned at 4 microm. They were then stained together with 4 microm sections of the test specimen obtained from bladder cancer material. A colour based classifier is automatically computed from the control cells. The method was tested on formalin fixed paraffin embedded tissue section material, stained with monoclonal antibodies against the Ki67 antigen and cyclin A protein. Ki67 staining results in a detailed nuclear texture with pronounced nucleoli and cyclin A staining is obtained in a more homogeneously distributed pattern. However, different staining patterns did not seem to influence labelling index quantification, and the sensitivity to variations in light conditions and choice of areas within the control population was low. Thus, the technique represents a robust and reproducible quantification method. In tests measuring proportions of stained area an average standard deviation of about 1.5% for the same field was achieved when classified with classifiers created from different control samples.  相似文献   

11.
Abstract

The overwhelming majority of antibodies useful for formalin fixed, paraffin embedded (FFPE) tissues require antigen retrieval to reverse the effect of formalin fixation and re-establish immunoreactivity. How this reversal happens is poorly understood. We developed a new experimental model for studying the mechanism of formalin fixation and antigen retrieval. Epitope mapping studies on nine antibodies useful for FFPE tissues revealed that each consisted of a contiguous stretch of amino acids in the native protein (linear epitope). Small peptides representing the epitopes of antibodies to human epidermal growth factor receptor type (HER2), estrogen, and progesterone receptors were attached covalently to glass microscope slides in a peptide array. Most peptides retained immunoreactivity after formalin fixation. Immunoreactivity was completely abrogated for all peptides, however, if an irrelevant large protein was present during formalin-induced cross-linking. We hypothesize that cross-linking the irrelevant protein to the peptide epitopes sterically blocked antibodies from binding. Antigen retrieval dissociates irrelevant proteins and restores immunoreactivity. Because the epitopes for clinical antibodies require only primary protein structure, the fact that antigen retrieval probably denatures the secondary and tertiary structure of the protein is irrelevant. The same mechanism may occur in tissue samples subjected to formalin fixation and antigen retrieval.  相似文献   

12.
Autophagy assures cellular homeostasis, and gains increasing importance in cancer, where it impacts on carcinogenesis, propagation of the malignant phenotype and development of resistance. To date, its tissue-based analysis by immunohistochemistry remains poorly standardized. Here we show the feasibility of specifically and reliably assessing the autophagy markers LC3B and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry. Preceding functional experiments consisted of depleting LC3B and p62 in H1299 lung cancer cells with subsequent induction of autophagy. Western blot and immunofluorescence validated antibody specificity, knockdown efficiency and autophagy induction prior to fixation in formalin and embedding in paraffin. LC3B and p62 antibodies were validated on formalin fixed and paraffin embedded cell pellets of treated and control cells and finally applied on a tissue microarray with 80 human malignant and nonneoplastic lung and stomach formalin fixed and paraffin embedded tissue samples. Dot-like staining of various degrees was observed in cell pellets and 18/40 (LC3B) and 22/40 (p62) tumors, respectively. Seventeen tumors were double positive for LC3B and p62. P62 displayed additional significant cytoplasmic and nuclear staining of unknown significance. Interobserver-agreement for grading of staining intensities and patterns was substantial to excellent (kappa values 0.60-0.83). In summary, we present a specific and reliable IHC staining of LC3B and p62 on formalin fixed and paraffin embedded human tissue. Our presented protocol is designed to aid reliable investigation of dysregulated autophagy in solid tumors and may be used on large tissue collectives.Key words: Immunohistochemistry, immunofluorescence, formalin fixed paraffin embedded tissue, LC3B, p62, cancer  相似文献   

13.
An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis.  相似文献   

14.
The identification of proteins involved in tumour progression or which permit enhanced or novel therapeutic targeting is essential for cancer research. Direct MALDI analysis of tissue sections is rapidly demonstrating its potential for protein imaging and profiling in the investigation of a range of disease states including cancer. MALDI‐mass spectrometry imaging (MALDI‐MSI) has been used here for direct visualisation and in situ characterisation of proteins in breast tumour tissue section samples. Frozen MCF7 breast tumour xenograft and human formalin‐fixed paraffin‐embedded breast cancer tissue sections were used. An improved protocol for on‐tissue trypsin digestion is described incorporating the use of a detergent, which increases the yield of tryptic peptides for both fresh frozen and formalin‐fixed paraffin‐embedded tumour tissue sections. A novel approach combining MALDI‐MSI and ion mobility separation MALDI‐tandem mass spectrometry imaging for improving the detection of low‐abundance proteins that are difficult to detect by direct MALDI‐MSI analysis is described. In situ protein identification was carried out directly from the tissue section by MALDI‐MSI. Numerous protein signals were detected and some proteins including histone H3, H4 and Grp75 that were abundant in the tumour region were identified.  相似文献   

15.
A new method to detect the protozoan Neospora caninum using indirect in situ polymerase chain reaction (PCR) is described. In situ PCR combines the advantages of the extraordinarily high sensitivity and specificity of PCR and the in situ representation of immunohistochemical methods. We describe an indirect in situ PCR, whereby the amplified products were detected using a primed in situ (PRINS) reaction with hapten-labeled nucleotides and visualized using fluorochrome-labeled antibodies. This technique was carried out in both infected cell cultures and formalin fixed, paraffin embedded tissues. Clear signals were obtained in the N. caninum positive samples using in situ PCR, whereas control slides with Toxoplasma gondii infected tissues always yielded negative results.  相似文献   

16.
Reliable immunohistochemical detection of collagen in formalin fixed, paraffin embedded tissues requires protease digestion. While these pan-proteases (pepsin, trypsin, protease K, etc.) enhance collagen detection, they also digest many other tissue proteins and produce poor cellular morphology and unrecognizable cellular structures. Balancing the conditions (protease type, concentration, incubation time and temperature) to digest some, but not all, proteins in a tissue section while optimizing collagen detection requires one to compromise improved collagen immunolabeling with adequate cellular morphology. Furthermore, optimal conditions for digesting tissue proteins to enhance collagen detection vary among tissue types and their fixation. Although brain is not typically subject to these deleterious consequences, structures such as epithelium, spermatids, stroma etc. and other tissues with complicated histology are profoundly affected. To resolve this technical dilemma, we discovered a novel use for collagenase to enhance collagen immunodetection without affecting the noncollagen proteins, thereby preserving tissue morphology. Collagenase, which is typically used in vitro for disassociation of cells, has never been used reliably on formalin fixed, paraffin embedded tissue sections. This new use of collagenase for immunohistochemistry promotes increased collagen immunolabeling, is easy to use, is versatile, and allows preservation of tissue structure that provides maximal and accurate histological information.  相似文献   

17.
Reliable immunohistochemical detection of collagen in formalin fixed, paraffin embedded tissues requires protease digestion. While these pan-proteases (pepsin, trypsin, protease K, etc.) enhance collagen detection, they also digest many other tissue proteins and produce poor cellular morphology and unrecognizable cellular structures. Balancing the conditions (protease type, concentration, incubation time and temperature) to digest some, but not all, proteins in a tissue section while optimizing collagen detection requires one to compromise improved collagen immunolabeling with adequate cellular morphology. Furthermore, optimal conditions for digesting tissue proteins to enhance collagen detection vary among tissue types and their fixation. Although brain is not typically subject to these deleterious consequences, structures such as epithelium, spermatids, stroma etc. and other tissues with complicated histology are profoundly affected. To resolve this technical dilemma, we discovered a novel use for collagenase to enhance collagen immunodetection without affecting the noncollagen proteins, thereby preserving tissue morphology. Collagenase, which is typically used in vitro for disassociation of cells, has never been used reliably on formalin fixed, paraffin embedded tissue sections. This new use of collagenase for immunohistochemistry promotes increased collagen immunolabeling, is easy to use, is versatile, and allows preservation of tissue structure that provides maximal and accurate histological information.  相似文献   

18.
Preserved clinical material is a unique source for proteomic investigation of human disorders. Here we describe an optimized protocol allowing large scale quantitative analysis of formalin fixed and paraffin embedded (FFPE) tissue. The procedure comprises four distinct steps. The first one is the preparation of sections from the FFPE material and microdissection of cells of interest. In the second step the isolated cells are lysed and processed using ''filter aided sample preparation'' (FASP) technique. In this step, proteins are depleted from reagents used for the sample lysis and are digested in two-steps using endoproteinase LysC and trypsin. After each digestion, the peptides are collected in separate fractions and their content is determined using a highly sensitive fluorescence measurement. Finally, the peptides are fractionated on ''pipette-tip'' microcolumns. The LysC-peptides are separated into 4 fractions whereas the tryptic peptides are separated into 2 fractions. In this way prepared samples allow analysis of proteomes from minute amounts of material to a depth of 10,000 proteins. Thus, the described workflow is a powerful technique for studying diseases in a system-wide-fashion as well as for identification of potential biomarkers and drug targets.  相似文献   

19.
One of the major breakthroughs in molecular pathology during the last decade was the successful extraction of full-length proteins from formalin-fixed and paraffin-embedded (FFPE) clinical tissues. However, only limited data are available for the protein extraction efficiency of over-fixed tissues and FFPE blocks that had been stored for more than 15 years in pathology archives. In this study we evaluated the protein extraction efficiency of FFPE tissues which had been formalin-fixed for up to 144 hours and tissue blocks that were stored for 20 years, comparing an established and a new commercial buffer system. Although there is a decrease in protein yield with increasing fixation time, the new buffer system allows a protein recovery of 66% from 144 hours fixed tissues compared to tissues that were fixed for 6 hours. Using the established extraction procedure, less than 50% protein recovery was seen. Similarly, the protein extraction efficiency decreases with longer storage times of the paraffin blocks. Comparing the two buffer systems, we found that 50% more proteins can be extracted from FFPE blocks that were stored for 20 years when the new buffer system is used. Taken together, our data show that the new buffer system is superior compared to the established one. Because tissue fixation times vary in the routine clinical setting and pathology archives contain billions of FFPE tissues blocks, our data are highly relevant for research, diagnosis, and treatment of disease.  相似文献   

20.
A standard immunofluorescent method was modified for the staining of leptospires in formalin fixed, paraffin embedded tissues. Routine histologic sections were deparaffinized and treated with pepsin prior to staining. Pepsin treatment greatly enhanced subsequent staining of leptospires in naturally infected bovine and porcine tissues as well as in artificially infected tissues. Leptospires in naturally infected bovine tissues were usually undetectable in untreated sections but clearly visible in stained pepsin-treated sections. Naturally infected porcine kidney usually contained high levels of leptospiral antigen which could be stained without prior pepsin treatment. However, pepsin treatment of porcine tissues greatly increased the amount of leptospiral antigen detectable and made individual leptospires more conspicuous. The staining method could employ a single antiserum for the staining of leptospires from 13 serogroups. Also, leptospires could be stained in tissues stored in formalin for more than 14 months and in 26-year-old paraffin embedded tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号