首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jinghui Zhao 《Autophagy》2016,12(10):1967-1970
Proteins in eukaryotic cells are continually being degraded to amino acids either by the ubiquitin proteasome system (UPS) or by the autophagic-lysosomal pathway. The breakdown of proteins by these 2 degradative pathways involves totally different enzymes that function in distinct subcellular compartments. While most studies of the UPS have focused on the selective ubiquitination and breakdown of specific cell proteins, macroautophagy/autophagy is a more global nonselective process. Consequently, the UPS and autophagy were traditionally assumed to serve distinct physiological functions and to be regulated in quite different manners. However, recent findings indicate that protein breakdown by these 2 systems is coordinately regulated by important physiological stimuli. The activation of MTORC1 by nutrients and hormones rapidly suppresses proteolysis by both proteasomes and autophagy, which helps promote protein accumulation, whereas in nutrient-poor conditions, MTORC1 inactivation causes the simultaneous activation of these 2 degradative pathways to supply the deprived cells with a source of amino acids. Also this selective breakdown of key anabolic proteins by the UPS upon MTORC1 inhibition can help limit growth-related processes (e.g., cholesterol biosynthesis). Thus, the collaboration of these 2 degradative systems, together with the simultaneous control of protein translation by MTORC1, provide clear advantages to the organism in both growth and starvation conditions.  相似文献   

3.
4.
5.
6.
7.
8.
Alpha-Synuclein is degraded by both autophagy and the proteasome   总被引:19,自引:0,他引:19  
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of aggregates (Lewy bodies) in neurons. alpha-Synuclein is the major protein in Lewy bodies and rare mutations in alpha-synuclein cause early-onset PD. Consequently, alpha-synuclein is implicated in the pathogenesis of PD. Here, we have investigated the degradation pathways of alpha-synuclein, using a stable inducible PC12 cell model, where the expression of exogenous human wild-type, A30P, or A53T alpha-synuclein can be switched on and off. We have used a panel of inhibitors/stimulators of autophagy and proteasome function and followed alpha-synuclein degradation in these cells. We found that not only is alpha-synuclein degraded by the proteasome, but it is also degraded by autophagy. A role for autophagy was further supported by the presence of alpha-synuclein in organelles with the ultrastructural features of autophagic vesicles. Since rapamycin, a stimulator of autophagy, increased clearance of alpha-synuclein, it merits consideration as a potential therapeutic for Parkinsons disease, as it is designed for chronic use in humans.  相似文献   

9.
10.
《Autophagy》2013,9(8):1380-1390
The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.  相似文献   

11.
The neurofibromatosis type 2 (NF2) gene encodes an intracellular membrane-associated protein called merlin or schwannomin, which is known to be a tumor suppressor. Numerous studies have suggested that merlin is involved in the regulation of cell growth and proliferation. Previously, merlin/schwannomin was reported to block Ras-induced cell proliferation and anchorage-independent cell growth. Also, the N-terminus of merlin was found to suppress cell proliferation, although it appears to be less effective than full-length merlin. However, the inhibitory mechanism of merlin is unknown. In this report, merlin is shown to be effective at suppressing serum/Ras-induced and Elk-mediated SRE dependent transactivation, and serum-induced ERK phosphorylation in NIH3T3 cells. In addition, merlin inhibited serum-induced Elk phosphorylation, a downstream effector of ERKs. Also, the N-terminal deficient merlin mutant could not block serum-induced and Elk-mediated SRE dependent transactivation, although the C-terminal deficient merlin mutant could. These results suggest that merlin inhibits SRE dependent transactivation by repressing serum-induced ERK phosphorylation and its downstream effector, Elk phosphorylation. Also, the N-terminus of merlin may be important for its inhibitory effect. Our results show that merlin acts as a negative regulator of the SRE signaling pathway via the Ras-ERKs pathway.  相似文献   

12.
CARD8 is a pattern-recognition receptor that forms a caspase-1-activating inflammasome. CARD8 undergoes constitutive autoproteolysis, generating an N-terminal (NT) fragment with a disordered region and a ZU5 domain and a C-terminal (CT) fragment with UPA and CARD domains. Dipeptidyl peptidase 8 and dipeptidyl peptidase 9 inhibitors, including Val-boroPro, accelerate the degradation of the NT fragment via a poorly characterized proteasome-mediated pathway, thereby releasing the inflammatory CT fragment from autoinhibition. Here, we show that the core 20S proteasome, which degrades disordered and misfolded proteins independent of ubiquitin modification, controls activation of the CARD8 inflammasome. In unstressed cells, we discovered that the 20S proteasome degrades just the NT disordered region, leaving behind the folded ZU5, UPA, and CARD domains to act as an inhibitor of inflammasome assembly. However, in Val-boroPro–stressed cells, we show the 20S proteasome degrades the entire NT fragment, perhaps due to ZU5 domain unfolding, freeing the CT fragment from autoinhibition. Taken together, these results show that the susceptibility of the CARD8 NT domain to 20S proteasome-mediated degradation controls inflammasome activation.  相似文献   

13.
14.
15.
16.
Regulation of apoptosis by the ubiquitin and proteasome pathway   总被引:5,自引:1,他引:5  
Regulated proteolysis plays important roles in cell physiology as well as in pathological conditions. In most of the cases, regulated proteolysis is carried out by the ubiquitin- and proteasome-dependent proteolytic system, which is also in charge of the bulk of cytoplasmic proteolysis. However, apoptosis or the process of programmed cell death is regulated by a different proteolytic system, i.e . by caspases, a family of specialized cysteine proteases. Nevertheless, there is plenty of evidence of a crosstalk between the apoptotic pathways and the ubiquitin and proteasome system, whose function in apoptosis appears to be very complex. Proteasome inhibitors induce apoptosis in multiple cell types, while in other they are relatively harmless or even prevent apoptosis induced by other stimuli. Proteasomes degrade specific proteins during apoptosis, but on the other hand some components of the proteasome system are degraded by caspases. The knowledge about the involvement of the ubiquitin- and proteasome-dependent system in apoptosis is already clinically exploited, since proteasome inhibitors are being tested as experimental drugs in the treatment of cancer and other pathological conditions, where manipulation of apoptosis is desirable.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号