首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports on the current status of the research on blood substitutes with particular attention on hemoglobin-based oxygen carriers (HBOCs). Insights on the physiological role of hemoglobin are reported in the view of the development of both acellular and cellular hemoglobin-based oxygen carriers. Attention is then focused on biocompatible polymeric materials that find application as matrices for cellular based HBOCs and on the strategies employed to avoid methemoglobin formation. Results are reported regarding the use of bioerodible polymeric matrices based on hemiesters of alternating copolymer (maleic anhydride-co-butyl vinyl ether) for the preparation of hemoglobin loaded nanoparticles.  相似文献   

2.
Hemoglobin (Hb)-based oxygen carriers (HBOCs) also known as "blood substitutes" have been under active clinical development over the last two decades. Cell-free Hb outside its natural protective red blood cell environment, as is the case with all HBOCs, has been shown to be vasoactive in part due to the scavenging of vascular endothelial nitric oxide (NO) and may in some instances induce heme-mediated oxidative stress. Chemical modification intended to stabilize HBOCs in the tetrameric or polymeric forms introduces conformational constraints that result in proteins with diverse allosteric responses as well as oxidative and nitrosative redox side reactions. Intra and inter-molecular cross-linking may in some instances also determine the interactions between HBOCs and normal oxidative inactivation and clearance mechanisms. Oxygen and oxidative reactions of normal and several cross-linked Hbs as well as their interactions with endogenous plasma protein (haptoglobin) and cellular receptor pathways (macrophage CD163) differ significantly. Therefore, safety and efficacy may be addressed by designing HBOCs with modifications that limit hypertension, minimize heme destabilization and take into account endogenous Hb removal mechanisms to optimize exposure times for a given indication.  相似文献   

3.
Historically, exogenous administration of hemoglobin solutions to implement the oxygen transport capacity for clinical applications suffered from dramatic drawbacks, resulting in the failure of many attempts. In the last decades, the biochemical and physiological basis responsible for the therapeutic failures has been extensively investigated. It is now widely accepted that they mostly arise because, out of the confined and controlled environment of the red blood cell, hemoglobin exhibits tetramer instability, increased auto-oxidation rate, higher oxygen affinity, altered cooperativity and nitric oxide reactivity. Moreover, it became evident that the design of a hemoglobin-based oxygen carrier that exactly reproduces the "physiological" oxygen-binding curve is not only an overly ambitious task, but may also represent a wrong approach for many potential clinical applications. Under these premises, and given the complex chemical nature of blood, it is obvious that any strategy undertaken to modify the stability and function of the hemoglobin tetramer for clinical use should be driven by a detailed knowledge of its structure, dynamics and mechanism of allosteric regulation. We briefly review the most recent theories and experiments that increased our understanding of the mechanism of homo- and heterotropic effects in human hemoglobin, trying to interpret, on a biophysical basis, how diverse approaches like polymerization, cross-linking, site-directed mutagenesis, surface decoration and encapsulation may affect ligand affinity and allosteric regulation.  相似文献   

4.
This work represents a culmination of research on oxygen transport to muscle tissue, which takes into account oxygen transport due to convection, diffusion, and the kinetics of simultaneous reactions between oxygen and hemoglobin and myoglobin. The effect of adding hemoglobin-based oxygen carriers (HBOCs) to the plasma layer of blood in a single capillary surrounded by muscle tissue based on the geometry of the Krogh tissue cylinder is examined for a range of HBOC oxygen affinity, HBOC concentration, capillary inlet oxygen tension (pO(2)), and hematocrit. The full capillary length of the hamster retractor muscle was modeled under resting (V(max) = 1.57 x 10(-4) mLO(2) mL(-1) s(-1), cell velocity (v(c)) = 0.015 cm/s) and working (V(max) = 1.57 x 10(-3) mLO(2) mL(-1) s(-1), v(c) = 0.075 cm/s) conditions. Two spacings between the red blood cell (RBC) and the capillary wall were examined, corresponding to a capillary with and without an endothelial surface layer. Simulations led to the following conclusions, which lend physiological insight into oxygen transport to muscle tissue in the presence of HBOCs: (1) The reaction kinetics between oxygen and myoglobin in the tissue region, oxygen and HBOCs in the plasma, and oxygen and RBCs in the capillary lumen should not be neglected. (2) Simulation results yielded new insight into possible mechanisms of oxygen transport in the presence of HBOCs. (3) HBOCs may act as a source or sink for oxygen in the capillary and may compete with RBCs for oxygen. (4) HBOCs return oxygen delivery to muscle tissue to normal for varying degrees of hypoxia (inlet capillary pO(2) < 30 mmHg) and anemia (hematocrit < 46%) for the hamster model.  相似文献   

5.
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.  相似文献   

6.
Second generation hemoglobin-based O(2) carriers (HBOCs) are being developed with high O(2) affinity (low P(50)) in order to suppress vasoconstriction elicited by over-oxygenating tissues, a problem associated with low O(2) affinity first generation HBOCs. Our group has previously investigated the polymerization of hemoglobin (Hb) with dialdehydes as a strategy for engineering high O(2) affinity HBOCs. In this study, two novel reactive dialdehydes were synthesized by ring-opening 2-chloroethyl-beta-D-fructopyranoside (2-CEFP) and 1-o-octyl-beta-D-glucopyranoside (1-OGP) at the 1,2-diol position, respectively, to yield novel Hb polymerizing reagents. High-affinity polymerized HBOCs were synthesized by reacting R-state bovine hemoglobin (bHb) with ring-opened 2-CEFP and 1-OGP at cross-linker to bHb molar ratios ranging from 10:1 to 30:1. The resulting polymerized bovine HBOCs (bHBOCs) displayed P(50)s ranging from 7 to 18 mmHg, cooperativities ranging from 0.8 to 1.4, and methemoglobin (metHb) levels ranging from 3% to 10%. The cross-linking reaction also stabilized the third stepwise Adair coefficient for bHbs reacted with ring-opened 1-OGP at cross-linker to bHb molar ratios of 20:1 and 30:1 and for bHbs reacted with ring-opened 2-CEFP at molar ratios of 30:1. Additionally, the number-averaged molecular weight, M(n), of each polymerized bHBOC was larger compared to bHb. Molecular weight distributions leaning towards larger molecular weight bHBOCs were obtained by increasing the cross-linker to bHb molar ratio. Taken together, the results of this study have identified novel Hb polymerization reagents that are easy to synthesize, and that are capable of yielding bHBOCs with higher O(2) affinities and weight-averaged molecular weights compared to bHb.  相似文献   

7.
8.
Hepatic hollow fiber bioreactors are considered a promising class of bioartificial liver assist device (BLAD). Unfortunately, limited oxygen (O(2)) transport to hepatocytes within this device hinders further development. Hepatocytes in vivo (in the liver sinusoid) experience a wide range of oxygen tensions (pO(2) = 25-70 mmHg), which is important for development of proper differentiated function (zonation). Previously, we observed that bovine red blood cell (bRBC) supplementation of the circulating media stream enhanced oxygenation of cultured C3A hepatoma cells compared to a culture with no O(2) carrier (Gordon, J.; Palmer, A. F. Artif. Cells, BloodSubstitutes, Biotechnol. 2006, 33 (3), 297-306). Despite this success, the cells were not exposed to the desired in vivo O(2) spectrum (Sullivan, J.; Gordon, J.; Palmer, A. Biotechnol. Bioeng. 2006, 93 (2) 306-317). We hypothesize that altering the kinetics of O(2) binding/release to/from hemoglobin-based O(2) carriers (HBOCs) could potentially target O(2) delivery to cell cultures. High P(50) (low O(2) affinity) HBOCs preferentially targeted O(2) delivery at high inlet pO(2) values. Conversely, low P(50) (high O(2) affinity) HBOCs targeted O(2) delivery at low inlet pO(2) values. Additionally, inlet pO(2), flow rate, and HBOC concentration were varied to find optimal bioreactor operating conditions. Our results demonstrate that HBOCs can enhance O(2) delivery to cultured hepatocytes, while exposing them to in vivo-like O(2) tensions, which is critical to create a fully functional BLAD.  相似文献   

9.
Artificial blood substitutes based on glutaraldehyde cross-linked hemoglobin (PolyHb) are currently being developed for use in human subjects needing blood transfusions. Despite the commercial development of PolyHb dispersions, a systematic study of the effect of varying the glutaraldehyde to hemoglobin (G-Hb) molar ratio on the resulting PolyHb physical properties (molecular weight distribution and oxygen binding parameters) has not been conducted to date. The results of this study show that increasing the G-Hb molar ratio elicits a general decrease in the P50 (partial pressure of oxygen at which Hb is half saturated with oxygen) and cooperativity and a simultaneous increase in the weight averaged molecular weight (Mw) of the PolyHb dispersion and methemoglobin (MetHb) level. Three PolyHb dispersions (20:1, 30:1, and 40:1 G-Hb molar ratios) displayed potential as artificial blood substitutes. The 20:1 PolyHb dispersion resulted in the presence of more intramolecularly cross-linked and non-cross-linked tetramers versus cross-linked species that were larger than a tetramer ( approximately 75% tetrameric and approximately 25% higher-order species), lower MetHb level (8%), and P50 (20.1 mmHg) similar in magnitude to that of non-cross-linked Hb. The 30:1 PolyHb dispersion consisted of more higher-order species ( approximately 76%), higher MetHb level (28%), and lower P50 (13.3 mmHg). The 40:1 PolyHb dispersion resulted in a similar P50 of 13.0 mmHg and similar MetHb level (30%); however, this PolyHb dispersion only consisted of species larger than a tetramer. The molecular weight distribution of PolyHb dispersions was determined using asymmetric flow field-flow fractionator (AFFF) coupled with multiangle static light scattering (MASLS). This is the first time that AFFF-MASLS has been used to characterize the molecular weight distribution of PolyHb dispersions.  相似文献   

10.
Migita, Russell, Armando Gonzales, Maria L. Gonzales, Kim D. Vandegriff, and Robert M. Winslow. Blood volume and cardiac indexin rats after exchange transfusion with hemoglobin-based oxygencarriers. J. Appl. Physiol. 82(6):1995-2002, 1997.We have measured plasma volume and cardiac indexin rats after 50% isovolemic exchange transfusion with humanhemoglobin cross-linked between the -chains withbis(3,5-dibromosalicyl)fumarate (Hb) and with bovine hemoglobinmodified with polyethylene glycol (PEGHb). Hb and PEGHb differ incolloid osmotic pressure (23.4 and 118.0 Torr, respectively), oxygenaffinity (oxygen half-saturation pressure of hemoglobin = 30.0 and 10.2 Torr, respectively), viscosity (1.00 and 3.39 cP, respectively), andmolecular weight (64,400 and 105,000, respectively). Plasma volume wasmeasured by Evans blue dye dilution modified for interference by plasmahemoglobin. Blood volumes in PEGHb-treated animals were significantlyelevated (74.0 ± 3.5 ml/kg) compared with animals treated withHb (49.0 ± 1.2 ml/kg) or Ringer lactate (48.0 ± 2.0 ml/kg) or with controls (58.2 ± 1.9 ml/kg). Heart rate reductionafter Hb exchange is opposite to that expected with blood volumecontraction, suggesting that Hb may have a direct myocardialdepressant action. The apparently slow elimination of PEGHb during the2 h after its injection is a consequence of plasma volume expansion:when absolute hemoglobin (concentration × plasma volume) iscompared for PEGHb and Hb, no difference in their eliminationrates is found. These studies emphasize the need to understand bloodvolume regulation when the effects of cell-free hemoglobin onhemodynamic measurements are evaluated.

  相似文献   

11.
Three "blood substitutes," a diaspirin cross-linked human hemoglobin (DBBF-Hb), a bovine polymerized hemoglobin (PolyHbBv), and a human polymerized hemoglobin (O-R-PolyHbA(0)), that have undergone clinical trials are used in this study. Previously, we showed in the rat that coadministration of sodium selenite (Na(2)SeO(3)) and DBBF-Hb significantly decreased mesenteric venular leakage and epithelial disruption produced by DBBF-Hb alone but did not reduce mast cell degranulation unless given orally. The purpose of this study was to determine whether Na(2)SeO(3) produced similar beneficial responses when used with PolyHbBv and O-R-PolyHbA(0). In anesthetized Sprague-Dawley rats, the mesenteric microvasculature was perfused with PolyHbBv or O-R-PolyHbA(0), with and without Na(2)SeO(3) in the perfusate and suffusate, for 10 min, followed by FITC-albumin for 3 min, and then fixed for microscopy. Na(2)SeO(3) did not reduce leak number or area in preparations perfused with PolyHbBv and only reduced leak number (but not significantly) in preparations perfused with O-R-PolyHbA(0). Na(2)SeO(3) significantly increased mesenteric mast cell degranulation and impaired epithelial integrity in animals treated with PolyHbBv. In vitro, Na(2)SeO(3) significantly reduced the oxidation rate of DBBF-Hb in the presence of oxidants, had little effect on PolyHbBv, and increased the oxidation rate of O-R-PolyHbA(0). These results suggest that Na(2)SeO(3) moderates hemoglobin-induced damage, at least partly, through its redox interactions with the heme sites in the hemoglobin molecules studied and that accessibility of the heme site to Na(2)SeO(3) governs those interactions.  相似文献   

12.
介绍了目前比较有代表性的几类血红蛋白类氧载体的研究现状,着重介绍了第一代血红蛋白类氧载体存在的氧化性损伤问题和第二代偶联抗氧化酶的血红蛋白类氧载体的发展前景。  相似文献   

13.
14.
A series of hemoglobin (Hb)-based O(2) carriers, acellular and cellular types, were synthesized and their physicochemical characteristics were compared. The acellular type includes intramolecularly cross-linked Hb (XLHb), polyoxyethylene (POE)-conjugated pyridoxalated Hb (POE-PLP-Hb), hydroxyethylstarch-conjugated Hb (HES-XLHb), and glutaraldehyde-polymerized XLHb (Poly-XLHb). The cellular type is Hb-vesicles (HbV) of which the surface is modified with POE (POE-HbV). Their particle diameters are 7 +/- 2, 22 +/- 2, 47 +/- 17, 68 +/- 24, and 224 +/- 76 nm, respectively, thus all the materials penetrate across membrane filters with 0.4 microm pore size, though only the POE-HbV cannot penetrate across the filter with 0.2 microm pore size. These characteristics of permeability are important to consider an optimal particle size in microcirculation in vivo. POE-PLP-Hb ([Hb] = 5 g/dL) showed viscosity of 6.1 cP at 332 s(-1) and colloid osmotic pressure (COP) of 70.2 Torr, which are beyond the physiological conditions (human blood, viscosity = 3-4 cP, COP = ca. 25 Torr). XLHb and Poly-XLHb showed viscosities of 1.0 and 1.5 cp, respectively, which are significantly lower than that of blood. COP of POE-HbV is regulated to 20 Torr in 5% human serum albumin (HSA). HES-XLHb and POE-HbV/HSA showed comparable viscosity with human blood. Microscopic observation of human red blood cells (RBC) after mixing blood with POE-PLP-Hb or HES-XLHb disclosed aggregates of RBC, a kind of sludge, indicating a strong interaction with RBC, which is anticipated to modify peripheral blood flow in vivo. On the other hand, XLHb and POE-HbV showed no rouleaux or aggregates of RBC. The acellular Hbs (P(50) = 14-32 Torr) have their specific O(2) affinities determined by their structures, while that of the cellular POE-HbV is regulated by coencapsulating an appropriate amount of an allosteric effector (e.g., P(50) = 18, 32 Torr). These differences in physicochemical characteristics between the acellular and cellular types indicate the advantages of the cellular type from the physiological points of view.  相似文献   

15.
16.
A surface-modified polyethylene glycol-conjugated human hemoglobin (MP4) and alpha alpha-cross-linked human hemoglobin (alpha alpha Hb) were used to restore oxygen carrying capacity in conditions of extreme hemodilution (hematocrit 11%) in the hamster window model preparation. Changes in microvascular function were analyzed in terms of effects on capillary pressure and functional capillary density (FCD). MP4, at 1.0 +/- 0.2 g/dl blood concentration, significantly lowered mean arterial pressure (MAP) below baseline (99.6 +/- 7.6 mmHg) to 82.4 +/- 6.9 mmHg (P < 0.05) and decreased of FCD to 70 +/- 9%. alpha alpha Hb caused a greater recovery in MAP to 94.4 +/- 6.2 mmHg and lowered FCD to 62 +/- 8%. However, differences between alpha alpha Hb and MP4 in FCD were not statistically significant. Capillary pressures were in the ranges of 17-21 mmHg for MP4 and 15-19 mmHg for alpha alpha Hb, with both significantly lower than baseline (P < 0.05). Pressure in 80-microm-diameter arterioles was significantly increased with alpha alpha Hb relative to MP4 (P < 0.05). These results were compared with previous findings on the relation between capillary pressure and FCD; they supported the concept of a relationship between FCD and capillary pressure. Measurement of changes in arteriolar diameter, microvascular blood flow, and FCD show that there was no statistical difference between using alpha alpha Hb and MP4 in extreme hemodilution. Microvascular resistance in arterioles with a diameter range of 70-80 microm showed an increase relative to control with alpha alpha Hb, whereas MP4 caused a decrease.  相似文献   

17.
The oxygen transport capacity of phospholipid vesicles encapsulating purified Hb (HbV) produced with a Po(2) at which Hb is 50% saturated (P 50 ) of 8 (HbV(8)) and 29 mmHg (HbV(29)) was investigated in the hamster chamber window model by using microvascular measurements to determine oxygen delivery during extreme hemodilution. Two isovolemic hemodilution steps were performed with 5% recombinant albumin (rHSA) until Hct was 35% of baseline. Isovolemic exchange was continued using HbV suspended in rHSA solution to a total [Hb] of 5.7 g/dl in blood. P(50) was modified by coencapsulating pyridoxal 5'-phosphate. Final Hct was 11% for the HbV groups, with a plasma [Hb] of 2.1 +/- 0.1 g/dl after exchange with HbV(8) or HbV(29). A reference group was hemodiluted to Hct 11% with only rHSA. All groups showed stable blood pressure and heart rate. Arterial oxygen tensions were significantly higher than baseline for the HbV groups and the rHSA group and significantly lower for the HbV groups compared with the rHSA group. Blood pressure was significantly higher for the HbV(8) group compared with the HbV(29) group. Arteriolar and venular blood flows were significantly higher than baseline for the HbV groups. Microvascular oxygen delivery and extraction were similar for the HbV groups but lower for the rHSA group (P < 0.05). Venular and tissue Po(2) were statistically higher for the HbV(8) vs. the HbV(29) and rHSA groups (P < 0.05). Improved tissue Po(2) is obtained when red blood cells deliver oxygen in combination with a high- rather than low-affinity oxygen carrier.  相似文献   

18.
The oxygen affinity of washed red cells suspended in their own plasma or in CSF has been studied to demonstrate a possible effect of CSF on the oxygen affinity of human haemoglobin. The CSF was found to reduce the oxygen affinity of haemoglobin significatively, and this was not imputable to the action of pH, PCO2, temperature, 2,3DPG A hypothesis to explain the data found and their clinical interest towards the regulation of brain oxygenation was formulated considering the Monod-Wyman-Changeux model and the effect of solutions on proteins.  相似文献   

19.
Reactive oxygen species have been identified as key mediators of leukocyte/endothelial cell interaction under various pathological conditions and diseases such as ischemia/reperfusion injury, inflammation, and after exposure to cigarette smoke. Consequently, antioxidants have been shown to successfully prevent the sequelae of these conditions, ranging from tissue infarction to atherogenesis. In this study we investigated whether, via its established superoxide dismutase-like activity, a novel polynitroxyl hemoglobin-based oxygen carrier (PNH), could affect the stimulation of leukocyte rolling and adhesion to endothelial cells in response to cigarette smoke. Using the dorsal skin fold chamber model for intravital microscopic observation of leukocyte/endothelium and -/platelet interactions in hamsters, we could demonstrate that cigarette smoke exposure elicited in control animals the rolling and adhesion of leukocytes along the endothelium of postcapillary venules and also of arterioles, as well as the formation of leukocyte/platelet aggregates. In contrast to the hemoglobin based oxygen carrier (HBOC) alone, that showed no therapeutic benefit, PNH significantly inhibited these proadhesive processes secondary to cigarette smoke. Also, PNH significantly reduced the formation of leukocyte/platelet aggregates in the blood stream of the cigarette smoke-exposed animals. These effects are not due to changes in microhemodynamic conditions, because wall shear rates remained unchanged in all three groups of animals.  相似文献   

20.
The trans-Golgi network (TGN) is one of the main, if not the main, sorting stations in the process of intracellular protein trafficking. It is therefore of central importance to understand how the key players in the TGN-based sorting and delivery process, the post-Golgi carriers (PGCs), form and function. Over the last few years, modern morphological approaches have generated new insights into the questions of PGC biogenesis, structure and dynamics. Here, we present a view by which the “lifecycle” of a PGC consists of several distinct stages: the formation of TGN tubular export domains (where different cargoes are segregated from each other and from the Golgi enzymes); the docking of these tubular domains onto molecular motors and their extrusion towards the cell periphery along microtubules; the fission of the forming PGC from the donor membrane; and the delivery of the newly formed PGC to its specific acceptor organelle. It is now important to add the many molecular machineries that have been described as operating at the TGN to this “morphofunctional map” of the TGN export process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号