首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GerA nutrient receptor alone triggers germination of Bacillus subtilis spores with L-alanine or L-valine, and these germinations were stimulated by glucose and K+ plus the GerK nutrient receptor. The GerB nutrient receptor alone did not trigger spore germination with any nutrients but required glucose, fructose, and K+ (GFK) (termed cogerminants) plus GerK for triggering of germination with a number of L-amino acids. GerB and GerA also triggered spore germination cooperatively with l-asparagine, fructose, and K+ and either L-alanine or L-valine. Two GerB variants (termed GerB*s) that were previously isolated by their ability to trigger spore germination in response to D-alanine do not respond to D-alanine but respond to the same L-amino acids that stimulate germination via GerB plus GerK and GFK. GerB*s alone triggered spore germination with these L-amino acids, although GerK plus GFK stimulated the rates of these germinations. In contrast to l-alanine germination via GerA, spore germination via L-alanine and GerB or GerB* was not inhibited by D-alanine. These data support the following conclusions. (i) Interaction with GerK, glucose, and K+ somehow stimulates spore germination via GerA. (ii) GerB can bind and respond to L-amino acids, although normally either the binding site is inaccessible or its occupation is not sufficient to trigger spore germination. (iii) Interaction of GerB with GerK and GFK allows GerB to bind or respond to amino acids. (iv) In addition to spore germination due to the interaction between GerA and GerK, and GerB and GerK, GerB can interact with GerA to trigger spore germination in response to appropriate nutrients. (v) The amino acid sequence changes in GerB*s reduce these receptor variants' requirement for GerK and cogerminants in their response to L-amino acids. (vi) GerK binds glucose, GerB interacts with fructose in addition to L-amino acids, and GerA interacts only with L-valine, L-alanine, and its analogs. (vii) The amino acid binding sites in GerA and GerB are different, even though both respond to L-alanine. These new conclusions are integrated into models for the signal transduction pathways that initiate spore germination.  相似文献   

2.
Characterization of germination receptors of Bacillus cereus ATCC 14579   总被引:3,自引:0,他引:3  
Specific amino acids, purine ribonucleosides, or a combination of the two is required for efficient germination of endospores of Bacillus cereus ATCC 14579. A survey including 20 different amino acids showed that l-alanine, l-cysteine, l-threonine, and l-glutamine are capable of initiating the germination of endospores of B. cereus ATCC 14579. In addition, the purine ribonucleosides inosine and adenosine can trigger germination of the spores. Advanced annotation of the B. cereus ATCC 14579 genome revealed the presence of seven putative germination (ger) operons, termed gerG, gerI, gerK, gerL, gerQ, gerR, and gerS. To determine the role of the encoded putative receptors in nutrient-induced germination, disruption mutants were constructed by the insertion of pMUTIN4 into each of the seven operons. Four of the seven mutants were affected in the germination response to amino acids or purine ribonucleosides, whereas no phenotype could be attributed to the mutants with disrupted gerK, gerL, and gerS loci. The strain with a disrupted gerR operon was severely hampered in the ability to germinate: germination occurred in response to l-glutamine but not in the presence of any of the other amino acids tested. The gerG mutant showed significantly reduced l-glutamine-induced germination, which points to a role of this receptor in the l-glutamine germination signaling pathway. gerR, gerI, and gerQ mutants showed reduced germination rates in the presence of inosine, suggesting a role for these operons in ribonucleoside signaling. Efficient germination by the combination of l-glutamine and inosine was shown to involve the gerG and gerI operons, since the germination of mutants lacking either one of these receptors was significantly reduced. Germination triggered by the combination of l-phenylalanine and inosine was lost in the gerI mutant, indicating that both molecules are effective at the GerI receptor.  相似文献   

3.
Metabolic events involved in energy metabolism were studied in order to evaluate the ATP-forming ability of Bacillus megaterium QM B1551 spores at the very early stage of germination. When heat-activated spores were germinated on glucose as a sole substrate, its oxidation into gluconate (catalyzed by glucose dehydrogenase, EC 1.1.1.47), the accompanying NADH formation, oxygen uptake, and RNA synthesis were initiated immediately after germination, even when anaerobic breakdown of 3-phosphoglycerate (an ATP source for spores) and the subsequent glucose metabolism via the phosphorylating pathway were impaired by potassium fluoride (KF). In contrast, fructose metabolism and the accompanying metabolic events did not begin until a few minutes after triggering of germination, and those events were entirely abolished by KF, indicating that fructose metabolism is initiated exclusively via its phosphorylation by the ATP derived from endogenous 3-phosphoglycerate. Thus those results provided further evidence for our previous proposal (Otani et al (1987) Microbiol. Immunol. 31: 967-974; Sano et al (1988) Biochem. Biophys. Res. Commun. 151: 48-52) that the first molecules of ATP in germinating spores can be efficiently generated via aerobic oxidation of NADH, which is formed by glucose dehydrogenase. Fluorescence monitoring of NADH in germinating spores also supported this conclusion.  相似文献   

4.
1. Carbamoyl phosphate synthetase was purified up to 45-fold from Alaska pea seedling (Pisum sativum L. cultivar Alaska). 2. The enzyme was most active with and had the lowest K(m) for l-glutamine as compared with NH(4) (+). 3. The purest preparations utilized very poorly or not at all l-asparagine and urea as nitrogen donors. 4. At saturating concentrations of components of the reaction, the K(m) for l-glutamine was 1.2x10(-4)m, and the K(m) for ATP was approx. 3.9x10(-4)m. 5. Although the enzyme was very labile, stability was improved by glutamine, asparagine, ammonium sulphate, dithiothreitol and especially l-ornithine. 6. Free ATP was markedly inhibitory, and MgATP(2-) and Mg(2+) appeared to be the actual substrates utilized. 7. Fe(2+) and Mn(2+) were also utilized, but not as readily as Mg(2+) except at low concentrations. K(+) increased activity significantly. 8. Of the four nucleotides tested (ITP, ATP, GTP and UTP) only ATP served as an effective phosphate donor.  相似文献   

5.
Germination requirements of Bacillus macerans spores   总被引:3,自引:2,他引:1       下载免费PDF全文
2-Phenylacetamide is an effective germinant for spores of five strains of Bacillus macerans, particularly in the presence of fructose. Benzyl penicillin, the phenyl acetamide derivative of penicillin, and phenylacetic acid are also good germinants. l-Asparagine is an excellent germinant for four strains. alpha-Amino-butyric acid is moderately effective. Pyridoxine, pyridoxal, adenine, and 2,6-diaminopurine are potent germinants for NCA strain 7X1 only. d-Glucose is a powerful germinant for strain B-70 only. d-Fructose and d-ribose strongly potentiate germination induced by other germinants (except l-asparagine) but have only weak activity by themselves. Niacinamide and nicotinamide-adenine dinucleotide, inactive by themselves, are active in the presence of fructose or ribose. Effects of pH, ion concentration, and temperature are described.  相似文献   

6.
The inhibitory effect of sodium 5,5-diethyl barbiturate (Veronal) on the L-alanine-induced initiation of germination of Bacillus subtilis spores was examined. Veronal reversibly inhibited the initiation of germination by a noncompetitive mechanism. The inhibition was time-independent and it took place whether L-alanine was or was not allowed to permeate the spore before the addition of the inhibitor. The concentration of the inhibitor and the pH of the initiation system were important factors determining the effectiveness of Veronal as an inhibitor. The magnitude of the inhibition increased linearly with decreasing pH at constant concentration and with increasing concentration at constant pH. These results suggest that the inhibition involves a permeability phenomenon related to the access of drug to the active sites in the spore and that the entry of Veronal into the spores is regulated by the concentration of undissociated molecule. At the physiologically important pH of 7.4, initiation with alanine in phosphate buffer at high spore densities (about 10(9) spores per ml) was 50% inhibited by 4 mM Veronal, and 8mM Veronal inhibited initiation completely. L-Alanine initiation in tris(hydroxymethyl)amino-methane-hydrochloride buffer was completely inhibited by 5 mM Veronal. The inhibition could be partially reversed by the combined addition of D-fructose, D-glucose, and K(+). Possible reasons for the failure of otherwise inhibitory concentrations of Veronal to inhibit completely the L-alanine-induced initiation when a combination of fructose, glucose, and K(+) was present and a suggested relationship to two functional roles of L-alanine in the initiation of germination are discussed.  相似文献   

7.
A method for specific removal of [32P]orthophosphate (Pi) as phosphomolybdate-triethylamine complex was slightly modified by repeating the Pi precipitation procedures in the presence of unlabeled Pi, which resulted in a complete removal of 32Pi (greater than 99.98%). Using this modified method, we determined 32P incorporation into acid-soluble compounds in order to evaluate the ATP-forming ability of Bacillus megaterium spores at the very early stage of germination. Addition of fructose as a substrate started the 32P incorporation later than a few min after triggering germination. This delay of a few min was well coincident with the onset of 3-phosphoglycerate (3PGA) breakdown, indicating that fructose metabolism and the accompanying aerobic ATP formation were initiated only after fructose phosphorylation by the ATP derived from anaerobic breakdown of endogenous 3PGA. In contrast, addition of glucose started incorporation of 32P into acid-soluble compounds immediately after germination. In the latter case, NADH generated by glucose oxidation to gluconate (catalyzed by glucose dehydrogenase) might serve as an initial ATP source without depending on 3PGA breakdown and glucose metabolism via the Embden-Meyerhof pathway.  相似文献   

8.
Enzyme activities of glycolysis and glyconeogenesis are present in spores of Bacillus subtilis, the rate-limiting step of glucose (GLC) metabolism being its phosphorylation. GLC allows initiation of germination in the presence of fructose (FRU) and asparagine (ASN), not because it is used via the Embden-Meyerhof path, but because it is oxidized in the nonphosphorylated form via the spore-specific GLC dehydrogenase. Spores of mutants lacking GLC-phosphoenolpyruvate transferase, FRU-6-P-kinase, or phosphoglucoisomerase activity can still be initiated by the above substrate combination. Furthermore, GLC can be replaced by 2-deoxy-GLC, which is also oxidized by GLC-dehydrogenase, but not by α- or β-methylglucoside, which are not substrates of this enzyme. GLC probably acts by reducing nicotinamide adenine dinucleotide (or nicotinamide adenine dinucleotide phosphate), which is used for some metabolic reaction other than the cytochrome-linked electron transport system, since inhibitors of this system do not inhibit initiation. Spores of a mutant lacking FRU-1-P-kinase activity can no longer be initiated by GLC+FRU+ASN, but they do respond to the combination of GLC+mannose+ASN. Since spores of a FRU-6-P-kinase (or phosphoglucoisomerase) mutant can still respond to either FRU or mannose, FRU-6-P (or some derivative) apparently is needed for initiation (in addition to reduced nicotinamide adenine dinucleotide and an amino donor). Alanine can initiate germination in spores of all of the above mutants, indicating that it can form all required compounds. However, in a mutant lacking P-glycerate kinase activity, alanine initiates only after a long lag and at a slow rate, indicating that some compound in the upper metabolic subdivision is required for initiation, in agreement with the above findings. All initiating agents of B. subtilis probably produce the same required compound(s) by different metabolic routes.  相似文献   

9.
The rates of germination of Bacillus subtilis spores with L-alanine were increased markedly, in particular at low L-alanine concentrations, by overexpression of the tricistronic gerA operon that encodes the spore's germinant receptor for L-alanine but not by overexpression of gerA operon homologs encoding receptors for other germinants. However, spores with elevated levels of the GerA proteins did not germinate more rapidly in a mixture of asparagine, glucose, fructose, and K(+) (AGFK), a germinant combination that requires the participation of at least the germinant receptors encoded by the tricistronic gerB and gerK operons. Overexpression of the gerB or gerK operon or both the gerB and gerK operons also did not stimulate spore germination in AGFK. Overexpression of a mutant gerB operon, termed gerB*, that encodes a receptor allowing spore germination in response to either D-alanine or L-asparagine also caused faster spore germination with these germinants, again with the largest enhancement of spore germination rates at lower germinant concentrations. However, the magnitudes of the increases in the germination rates with D-alanine or L-asparagine in spores overexpressing gerB* were well below the increases in the spore's levels of the GerBA protein. Germination of gerB* spores with D-alanine or L-asparagine did not require participation of the products of the gerK operon, but germination with these agents was decreased markedly in spores also overexpressing gerA. These findings suggest that (i) increases in the levels of germinant receptors that respond to single germinants can increase spore germination rates significantly; (ii) there is some maximum rate of spore germination above which stimulation of GerA operon receptors alone will not further increase the rate of spore germination, as action of some protein other than the germinant receptors can become rate limiting; (iii) while previous work has shown that the wild-type GerB and GerK receptors interact in some fashion to cause spore germination in AGFK, there also appears to be an additional component required for AGFK-triggered spore germination; (iv) activation of the GerB receptor with D-alanine or L-asparagine can trigger spore germination independently of the GerK receptor; and (v) it is likely that the different germinant receptors interact directly and/or compete with each other for some additional component needed for initiation of spore germination. We also found that very high levels of overexpression of the gerA or gerK operon (but not the gerB or gerB* operon) in the forespore blocked sporulation shortly after the engulfment stage, although sporulation appeared normal with the lower levels of gerA or gerK overexpression that were used to generate spores for analysis of rates of germination.  相似文献   

10.
Two "ACE" mutants of Bacillus subtilis which require acetate for growth on glucose minimal medium have been isolated. They do not grow with acetoin, 2,3-butanediol, fatty acids, isoleucine, lipoic acid, malic acid, pyruvic acid, succinic acid, thiamine, or valine, but respond somewhat to glutamate or citrate. The mutants lack the activity of the pyruvate dehydrogenase complex; they excrete pyruvate and later acetoin. They grow in nutrient sporulation medium (NSMP) to one-half the normal turbidity and do not sporulate subsequently. When acetate is added to NSMP (at the optimal concentration of 0.07 m), the ACE mutants grow to the normal turbidity and then sporulate normally. Growth but not sporulation is restored in NSMP upon addition of 2,3-butanediol, citrate, glucose, glutamate, glycerol, or ribose, but not upon addition of acetoin, malate, oxaloacetate, pyruvate, and several other compounds. After growth in NSMP has stopped, the mutants incorporate uracil only at a very low rate, which can be increased by the addition of acetate, citrate, or glutamate. Furthermore, the metabolism of acetoin is prevented after growth has stopped but can be restored by the addition of acetate. All these results can be explained by a lack of reduced nicotinamide adenine dinucleotide (NADH) resulting from the deficiency in acetylcoenzyme A. In fact, after growth of the ACE mutants had stopped, the NADH concentration was at the borderline of measurability, whereas it increased significantly upon addition of glucose. The growing standard strain contains, at the same bacterial turbidity, at least 20 times more NADH (230 pmole/optical density unit at 600 nm) than the nongrowing ACE mutants. The isolated spores, obtained after growth in NSMP plus acetate, can be initiated to germinate in the presence of either l-alanine or the combination of l-asparagine, fructose, glucose, and potassium; addition of acetate is not required and has no effect.  相似文献   

11.
Spores of the standard transformable Marburg strain of Bacillus subtilis can be initiated to germinate by l-alanine alone. We isolated mutants which required for this process, in addition to l-alanine, the combination of d-glucose + d-fructose + K(+) or NH(4) (+) ions. In place of fructose, autoclaved or caramelized glucose could be used. Even the standard type strain required the addition of these three agents when d-alanine was present or when the temperature was raised. These findings show that l-alanine normally performs two functions during initiation, one of which is absent in the mutants or is blocked by d-alanine or elevated temperature. One of our mutants was not absolutely dependent on the addition of external l-alanine, because it could be initiated at a reduced rate by the sole addition of glucose + K(+) or NH(4) (+). When K(+) or NH(4) (+) was replaced by Na(+), the initiation rate was greatly reduced. The divalent metal ions Mg(++), Mn(++), and Ca(++) could not satisfy the cation requirement.  相似文献   

12.
l-Asparaginase from Serratia marcescens was found to hydrolyze l-glutamine at 5% of the rate of l-asparagine hydrolysis. The ratio of the two activities did not change through several stages of purification, anionic and cationic polyacrylamide disk gel electrophoresis, and partial thermal inactivation. The two activities had parallel blood clearance rates in mice. l-glutamine was found to be a competitive inhibitor of l-asparagine hydrolysis. A separate l-glutaminase enzyme free of l-asparaginase activity was separated by diethylaminoethyl-cellulose chromatography.  相似文献   

13.
The ability of Bacillus subtilis to form spores is a strategy for survival under unfavorable environmental conditions. It is equally crucial to break spore dormancy and return to vegetative growth at the appropriate time. Here we present data showing that the PrpE phosphatase is involved in the control of expression of genes coding for GerA receptors, which are necessary for L-alanine-induced spore germination. Moreover, PrpE is also involved in aspartic acid, glucose, fructose, and potassium (AGFK)-induced spore germination by controlling expression of genes coding for GerK receptors. In the absence of PrpE, the production of spores was essentially normal. However, L-alanine-induced spore germination and, to a lesser extent, the AGFK-induced pathway were abolished. In contrast, the germination pathway dependent on Ca2+-dipicolinate or dodecylamine remained intact. A protein phosphatase PrpE-green fluorescent protein fusion was localized to the prespore and to the dormant spore, consistent with a role in controlling expression of genes coding for GerA receptors. We propose that PrpE is an important element in a signal transduction pathway in Bacillus subtilis that controls the expression of genes coding for germination receptors.  相似文献   

14.
AIM: To understand the conditions promoting activation and germination of spores, and to contribute to the control of tempe starters. METHODS AND RESULTS: Using microscopic counts of fluorescent labelled spores, the following results were obtained: (1) L-alanine plays an important role (of the same order as that of peptone) in stimulation of germination of dormant spores. Alanine can satisfy the requirements of carbon as well as nitrogen for spore germination; (2) L-proline, on the other hand, inhibits alanine uptake presumably by blocking/congesting transporters of spore cells, resulting in apparent low viability on agar media; (3) L-leucine and L-isoleucine slightly favour spore germination while L-arginine and L-lysine do not have any stimulating effect; (4) The stimulatory role of glucose was only evident in the presence of phosphate (in minimal medium); when glucose is used in the absence of phosphate, either alone or in combination with single amino acids its role is hardly distinguishable; (5) Phosphate plays a facilitating role in spore germination. CONCLUSIONS: Glucose and amino acids play important roles in activation and germination of sporangiospores of Rhizopus oligosporus in tempe starter (stored for 12 months). The ability and rate of germination of dormant/old sporangiospores of R. oligosporus, depend on their ability for uptake of individual amino acids and/or glucose. SIGNIFICANCE AND IMPACT OF STUDY: New light was shed on the counteractive role of proline and the stimulating effect of phosphate. Soybeans subjected to traditional preparation for tempe making are heavily leached; germination of starter spores on such beans is sub-optimal, and bean processing could be optimized.  相似文献   

15.
1. The maximum catalytic activities of fructose diphosphatase from flight muscles of bumble-bees (Bombus spp.) are at least 30-fold those reported for the enzyme from other tissues. The maximum activity of fructose diphosphatase in the flight muscle of any particular bee is similar to that of phosphofructokinase in the same muscle, and the activity of hexokinase is similar to or greater than the activity of phosphofructokinase. There is no detectable activity of glucose 6-phosphatase and only a very low activity of glucose 6-phosphate dehydrogenase in these muscles. The activities of both fructose diphosphatase and phosphofructokinase vary inversely with the body weight of the bee, whereas that of hexokinase is relatively constant. 2. There is no significant hydrolysis of fructose 1-phosphate, fructose 6-phosphate, glucose 1,6-diphosphate and glycerol 3-phosphate by extracts of bumble-bee flight muscle. 3. Fructose 1,6-diphosphatase from bumble-bee flight muscle and from other muscles is inhibited by Mn(2+) and univalent cations; the potency of inhibition by the latter varies in the order Li(+)>Na(+)>K(+). However, the fructose diphosphatase from bumble-bee flight muscle is different from the enzyme from other tissues in that it is not inhibited by AMP. 4. The contents of ATP, hexose monophosphates, fructose diphosphate and triose phosphates in bumble-bee flight muscle showed no significant changes between rest and flight. 5. It is proposed that both fructose diphosphatase and phosphofructokinase are simultaneously active and catalyse a cycle between fructose 6-phosphate and fructose diphosphate in resting bumble-bee flight muscle. Such a cycle would produce continuous hydrolysis of ATP, with the release of energy as heat, which would help to maintain the thoracic temperature during rest periods at a level adequate for flight.  相似文献   

16.
Teliospores of Ustilago nuda are exogenously dormant. Germination and respiration of these thick-walled spores were greatly stimulated by glucose. Cycloheximide, actinomycine D, salicylhydroxamic acid and cyanide inhibited germination completely. Dormant spores in water had a R.Q. of about 0.85. However, during early germination in glucose containing media the R.Q. increased to 1.4. The chemical composition of the spores did not change dramatically during early germination. The main reserve compounds of the spores were glycogen and lipid. Trehalose could not be detected. Radiorespirometric as well as enzymatic evidence suggested that glucose was metabolized along glycolysis and the hexose monophosphate pathway. The increasing activity of phosphofructokinase might allow an increased flow through the Embden-Meyerhof-Parnas pathway during early germination.Abbreviations EMP-pathway Embden-Meyerhof-Parnas pathway - HMP-pathway hexose monophosphate pathway - SHAM salicyl-hydroxamic acid - HEPES 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid - MES 2-morpholinoethanesulfonic acid  相似文献   

17.
Pathways of glucose catabolism during germination of Streptomyces spores   总被引:2,自引:0,他引:2  
Abstract The participation of the different glucose-catabolic pathways during germination of Streptomyces antibioticus spores was studied. In dormant spores, glucose is catabolized through the pentose phosphate (PP) and the Embden-Meyerhof-Parnas (EMP) pathways, with an active tricarboxylic acid cycle. The relative participation of each catabolic pathway is regulated by germinative or non-germinative conditions. During spore germination, the pentose phosphate pathway continuously increased in its participation in the glucose catabolism and it was the major glucose-catabolic pathway in the exponential phase of growth. In addition, it showed the existence of an active tricarboxylic acid cycle in dormant spores, which was being drained for biosynthetic purposes.  相似文献   

18.
Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to germination of their spores produced in several media. Germination initiation occurred in the presence of nutrient broth orL-alanine but not with inosine, glucose, glycerol or fructose; the process was activated by heat. Parental and mutant spores behaved similarly in these experiments. During outgrowth, parental spores remained in this phase of germination much longer than did mutant spores, but only when the parental spores had been harvested from a sporulation medium where significant gramicidin S synthesis had occurred. When parental spores were extracted or treated with an enzyme that hydrolyzes gramicidin S, rapid outgrowth occurred. Adding exogenous gramicidin S or the extract from parental spores to mutant spores lengthened the outgrowth in a dose-dependent manner. The uptake of labeledL-alanine by parental spores was delayed compared to mutant spores in the presence or absence of chloramphenicol. These data suggest a mechanism of action for gramicidin S whereby it interferes in membrane function, such as transport or energy metabolism, in outgrowing spores.Abbreviations GS Gramicidin S - CFU colony-forming units  相似文献   

19.
Two enzymes that catalyze the hydrolysis of l-asparagine have been isolated from extracts of Pseudomonas geniculata. After initial salt fractionation, the enzymes were separated by chromatography on diethylaminoethyl-Sephadex and purified to homogeneity by gel filtration, ion-exchange chromatography, and preparative polyacrylamide electrophoresis. The enzymes differ markedly in physicochemical properties. One enzyme, termed asparaginase A, has a molecular weight of approximately 96,000 whereas the other, termed asparaginase AG, has a molecular weight of approximately 135,000. Both enzymes are tetrameric. The asparaginase A shows activity only with l-asparagine as substrate, whereas the asparaginase AG hydrolyzes l-asparagine and l-glutamine at approximately equal rates and it is also active with d-asparagine and d-glutamine as substrates. The asparaginase A was found to be devoid of antitumor activity in mice, whereas the asparaginase AG was effective in increasing the mean survival times of both C3H mice carrying the asparagine-requiring Gardner 6C3HED tumor line and Swiss mice bearing the glutamine-requiring Ehrlich ascites tumor line. These differences in antitumor activity were related to differences in the K(m) values for l-asparagine for the two enzymes. The asparaginase A has a K(m) value of 1 x 10(-3) M for this substrate whereas the corresponding value for the AG enzyme is 1.5 x 10(-5) M. Thus the concentration of asparagine necessary for maximal activity of the asparaginase A is very high compared with that of the normal plasma level of asparagine, which is approximately 50 muM.  相似文献   

20.
The effect of pollen grains on infections caused by Botrytis cinerea Fr   总被引:4,自引:0,他引:4  
The addition of pollen to spores of Botrytis cinerea Fr. in droplets of distilled water stimulates spore germination, growth of germ tubes and lesion development. Aqueous diffusate from pollen is as effective as pollen grains, and frozen pollen is more stimulatory than freshly collected pollen. The presence of pollen grains reduces considerably the number of spores needed to allow infection to occur. The lost germination ability and infectivity of old spores is restored by pollen. The stimulatory effect of the presence of pollen has been demonstrated both in vitro and on the surfaces of strawberry petals, strawberry fruits and broad bean leaves. Complete removal of the source of pollen, the anthers from strawberry fruits, markedly affected the speed and severity of infections of strawberry fruits. On broad bean leaves the addition of pollen grains to spores induced the development of spreading aggressive lesions. Preliminary work indicates that the effective principle in pollen is water-soluble, dialysable and heat-stable. Although glucose and fructose are important components of diffusate, neither glucose solution nor fructose solution nor a mixture of the two showed as marked effects as did pollen. Orange juice produces similar effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号