首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Na+/I- symporter (NIS) is an intrinsic plasma membrane protein that mediates the active transport of I- in the thyroid, lactating mammary gland, stomach and salivary glands. The presence of NIS in the thyroid is exploited in diagnostic scintigraphic imaging and radioiodide therapy in thyroid cancer. The continued rapid progress in NIS research (aimed at the elucidation of the Na+-dependent I- transport mechanism, the analysis of NIS structure-function relations and the study of the tissue-specific regulation of NIS at all levels), holds potentially far-reaching medical applications beyond thyroid disease, in breast cancer and malignancies in other tissues.  相似文献   

3.
The sodium iodide symporter (NIS) has been characterized to mediate the active transport of iodide not only in the thyroid gland but also in various non-thyroidal tissues, including lactating mammary gland and the majority of breast cancers, thereby offering the possibility of diagnostic and therapeutic radioiodine application in breast cancer. In this report, we present a 57-year-old patient with multifocal papillary thyroid carcinoma, who showed focal radioiodine accumulation in a lesion in the right breast on a posttherapy (131)I scan following radioiodine therapy. CT and MR-mammography showed a focal solid lesion in the right breast suggestive of a fibroadenoma, which was confirmed by histological examination. Immunostaining of paraffin-embedded tumor tissue sections using a human NIS antibody demonstrated NIS-specific immunoreactivity confined to epithelial cells of mammary ducts. In conclusion, in a thyroid cancer patient we identified a benign fibroadenoma of the breast expressing high levels of functionally active NIS protein as underlying cause of focal mammary radioiodine accumulation on a posttherapy (131)I scan. These data show for the first time that functional NIS expression is not restricted to lactating mammary gland and malignant breast tissue, but can also be detected in benign breast lesions, such as fibroadenomata of the breast.  相似文献   

4.
The sodium/iodide symporter (NIS) mediates a remarkably effective targeted radioiodide therapy in thyroid cancer; this approach is an emerging candidate for treating other cancers that express NIS, whether endogenously or by exogenous gene transfer. Thus far, the only extrathyroidal malignancy known to express functional NIS endogenously is breast cancer. Therapeutic efficacy in thyroid cancer requires that radioiodide uptake be maximized in tumor cells by manipulating well-known regulatory factors of NIS expression in thyroid cells, such as TSH, which stimulates NIS expression via cAMP. Similarly, therapeutic efficacy in breast cancer will likely depend on manipulating NIS regulation in mammary cells, which differs from that in the thyroid. Human breast adenocarcinoma MCF-7 cells modestly express endogenous NIS when treated with all-trans-retinoic acid (tRa). We report here that hydrocortisone and ATP each markedly stimulates tRa-induced NIS protein expression and plasma membrane targeting in MCF-7 cells, leading to at least a 100% increase in iodide uptake. Surprisingly, the adenyl cyclase activator forskolin, which promotes NIS expression in thyroid cells, markedly decreases tRa-induced NIS protein expression in MCF-7 cells. Isobutylmethylxanthine increases tRa-induced NIS expression in MCF-7 cells, probably through a purinergic signaling system independent of isobutylmethylxanthine's action as a phosphodiesterase inhibitor. We also observed that neither iodide, which at high concentrations down-regulates NIS in the thyroid, nor cAMP has a significant effect on NIS expression in MCF-7 cells. Our findings may open new strategies for breast-selective pharmacological modulation of functional NIS expression, thus improving the feasibility of using radioiodide to effectively treat breast cancer.  相似文献   

5.
RET/PTC1 is a rearranged form of the RET tyrosine kinase commonly seen in papillary thyroid carcinomas. It has been shown that RET/PTC1 decreases expression of the sodium/iodide symporter (NIS), the molecule that mediates radioiodide therapy for thyroid cancer. Using proteomic analysis, we identify hsp90 and its co-chaperone p50cdc37 as novel proteins associated with RET/PTC1. Inhibition of hsp90 function with 17-allylamino-17-demothoxygeldanamycin (17-AAG) reduces RET/PTC1 protein levels. Furthermore, 17-AAG increases radioiodide accumulation in thyroid cells, mediated in part through a protein kinase A-independent mechanism. We show that 17-AAG does not increase the total amount of NIS protein or cell surface NIS localization. Instead, 17-AAG increases radioiodide accumulation by decreasing iodide efflux. Finally, the ability of 17-AAG to increase radioiodide accumulation is not restricted to thyroid cells expressing RET/PTC1. These findings suggest that 17-AAG may be useful as a chemotherapeutic agent, not only to inhibit proliferation but also to increase the efficacy of radioiodide therapy in patients with thyroid cancer.  相似文献   

6.
Expression of the Na(+)/I(-) symporter in invasive ductal breast cancer   总被引:2,自引:0,他引:2  
The function of the sodium iodide symporter (Na(+)/I(-), (NIS), a membrane protein that mediates iodide transport into cells, is the best described in the thyroid cells. NIS is also found in mammary cells during lactation and in breast carcinoma cells. The aim of this study was evaluation of incidence and grade of NIS expression in invasive ductal breast cancer. Immunohistochemistry using a panel of antibodies against NIS was carried out in surgical paraffin-embedded tissue obtained from 50 patients with invasive ductal breast carcinoma. NIS expression was found in 45 (90%) cases. The demonstration of NIS expression in breast carcinoma cells may provide a novel approach to its diagnosis and treatment.  相似文献   

7.
8.

Background  

Sodium/iodide symporter (NIS) mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study.  相似文献   

9.
Activation of p38 MAPK is a key pathway for cell proliferation and differentiation in breast cancer and thyroid cells. The sodium/iodide symporter (NIS) concentrates iodide in the thyroid and lactating breast. All-trans-retinoic acid (tRA) markedly induces NIS activity in some breast cancer cell lines and promotes uptake of β-emitting radioiodide (131)I sufficient for targeted cytotoxicity. To identify a signal transduction pathway that selectively stimulates NIS expression, we investigated regulation by the Rac1-p38 signaling pathway in MCF-7 breast cancer cells and compared it with regulation in FRTL-5 rat thyroid cells. Loss of function experiments with pharmacologic inhibitors and small interfering RNA, as well as RT-PCR analysis of p38 isoforms, demonstrated the requirement of Rac1, MAPK kinase 3B, and p38β for the full expression of NIS in MCF-7 cells. In contrast, p38α was critical for NIS expression in FRTL-5 cells. Treatment with tRA or overexpression of Rac1 induced the phosphorylation of p38 isoforms, including p38β. A dominant negative mutant of Rac1 abolished tRA-induced phosphorylation in MCF-7 cells. Overexpression of p38β or Rac1 significantly enhanced (1.9- and 3.9-fold, respectively), the tRA-stimulated NIS expression in MCF-7 cells. This study demonstrates differential regulation of NIS by distinct p38 isoforms in breast cancer cells and thyroid cells. Targeting isoform-selective activation of p38 may enhance NIS induction, resulting in higher efficacy of (131)I concentration and treatment of breast cancer.  相似文献   

10.
Breast cancer is a common malignancy in women all over the world and novel therapeutic approaches are required for the treatment of patients who become refractory to conventional therapies. Thyroid cancer is being treated successfully with radioiodine since many years. The iodide is transported inside the thyroid epithelial cell via sodium iodide symporter (NIS) which is a trans-membrane protein. The present study was aimed to explore the uptake of radioiodide (RAI) and the expression of NIS in breast tissues of invasive ductal carcinoma patients. Breast tissues from tumor region (Tu-Br) as well as corresponding normal region (N-Br) were collected from patients of invasive ductal carcinoma. In vitro RAI uptake, its efflux and NIS expression were studied. The uptake of RAI (1.98+/-1.75 x 10(5) cpm/g) in Tu-Br was significantly higher as compared to that observed in N-Br (0.31+/-0.27 x 10(5) cpm/g) and fast efflux was observed in the tissue samples. NIS gene expression was positive in 41.66% (10/24) samples of Tu-Br. None of the N-Br samples expressed NIS gene. In 14 samples of Tu-Br, RAI uptake as well as NIS expression was studied. In 50% of these Tu-Br samples RAI uptake as well as of NIS gene expression was positive. The results indicate that RAI uptake is significantly higher in breast tumor tissues as compared to their normal counterpart and in future radioiodine may be an important agent for treatment of breast cancer.  相似文献   

11.
为研究人钠/碘同向转运体(hNIS)的生物学性能和用于肿瘤放射性碘治疗的可能性,运用反转录聚合酶链反应(RT—PCR)从人甲状腺组织总RNA中扩增出hNIS基因cDNA序列,将其克隆至pUCm-T载体中。序列分析证实克隆片段与献报道的hNIS基因cDNA序列完全一致,说明已成功克隆到hNIS基因cDNA。  相似文献   

12.
The purpose of this study was to determine the content of iodine and selenium in the thyroid and pituitary glands of rats under iodine-induced blockade of the thyroid gland. Electron probe microanalysis, wavelength-dispersive spectrometry, and point analysis were used in this investigation. We also determined the expression of sodium iodide symporter and caspase 32 in the thyroid and pituitary glands and the expression of thyroid-stimulating hormone in the pituitary. The samples for iodine analysis must be thoroughly dehydrated, and for this purpose, we developed a method that produced samples of constant mass with minimal loss of substrate (human thyroid gland was used for the investigation). Normal levels of iodine and selenium were found in the thyroid, pituitary, ovaries, testes hypothalamus, and pancreas of healthy rats. The levels of iodine and selenium in I- or Se-positive points and the percentage of positive points in most of these organs were similar to those of controls (basal level), except for the level of iodine in the thyroid gland and testes. Blockade of the thyroid gland changed the iodine level in iodine-positive points of the thyroid and the pituitary glands. On the sixth day of blockage, the iodine level in iodine-positive points of the thyroid gradually decreased to the basal level followed by an abrupt increase on the seventh day, implying a rebound effect. The opposite was found in the pituitary, in which the level of iodine in iodine-positive points increased during the first 6 days and then abruptly decreased on the seventh day. Expression of the thyroid-stimulating hormone in the pituitary decreased during the first 5 days but sharply increased on the sixth day, with a minimum level of iodine in the thyroid and maximum in the pituitary, before normalization of the iodine level in both glands preceding the rebound effect. The expression of sodium iodide symporter increased during the first 4 days of blockage and then decreased in both glands. The fluctuations of the thyroid-stimulating hormone in the pituitary gland reflected the changes of iodine in the thyroid gland more precisely than the changes of sodium iodide symporter. The selenium level in the selenium-positive points changed only in the pituitary, dropping to zero on the second and fifth day of the blockade. Simultaneously, the maximum induction of caspase 32 was observed in the pituitary gland. We believe that these results may help to clarify a role of the pituitary gland in the thyroid blockade.  相似文献   

13.
The physiology of the nonlactating human breast likely plays a key role in factors that contribute to the etiology of breast cancer and other breast conditions. Although there has been extensive research into the physiology of lactation, few reports explore the physiology of the resting mammary gland, including mechanisms by which compounds such as hormones, drugs, and potential carcinogens enter the breast ducts. The purpose of this study was to explore transport of exogenous drugs into ductal fluid in nonlactating women and determine if their concentrations in the fluid are similar to those observed in the breast milk of lactating women. We selected two compounds that have been well characterized during lactation, caffeine and cimetidine. Caffeine passively diffuses into breast milk, but cimetidine is actively transported and concentrated in breast milk. After ingestion of caffeine and cimetidine, 14 nonlactating subjects had blood drawn and underwent ductal lavage at five time points over 12 h to measure drug levels in the fluid and blood. The concentrations of both caffeine and cimetidine in lavage fluid were substantially less than those observed in breast milk. Our results support recent evidence that the cimetidine transporter is not expressed in the nonlactating mammary gland, and highlight intriguing differences in the physiology and molecular transport of the lactating and nonlactating breast. The findings of this exploratory study warrant further exploration into the physiology of the nonlactating mammary gland to elucidate factors involved in disease initiation and progression.  相似文献   

14.
15.
16.
Flavonoids have inhibiting effects on the proliferation of cancer cells, including thyroidal ones. In the treatment of thyroid cancer the uptake of iodide is essential. Flavonoids are known to interfere with iodide organification in vitro, and to cause goiter. The influence of flavonoids on iodine metabolism was studied in a human thyroid cancer cell line (FTC-133) transfected with the human sodium/iodide transporter (NIS). All flavonoids inhibited growth, and iodide uptake was decreased in most cells. NIS mRNA expression was affected during the early hours after treatment, indicating that these flavonoids can act on NIS. Pendrin mRNA expression did not change after treatment. Only myricetin increased iodide uptake. Apeginin, luteolin, kaempferol and F21388 increased the efflux of iodide, leading to a decreased retention of iodide. Instead myricetin increased the retention of iodide; this could be of use in the radioiodide treatment of thyroid cancer.  相似文献   

17.
Pendred's syndrome is an autosomal recessive disorder characterized by sensorineural deafness, goiter, and impaired iodide organification. It is caused by mutations in the PDS/SLC26A4 gene that encodes pendrin. Functionally, pendrin is a transporter of chloride and iodide in Xenopus oocytes and heterologous mammalian cells and a chloride/base exchanger in beta-intercalated cells of the renal cortical collecting duct. The partially impaired thyroidal iodide organification in Pendred's syndrome suggests a possible role of pendrin in iodide transport at the apical membrane of thyroid follicular cells, but experimental evidence for this concept is lacking. The iodide transport properties of pendrin were determined in polarized Madin-Darby canine kidney cells expressing the sodium iodide symporter (NIS), pendrin, or NIS and pendrin using a bicameral system-permitting measurement of iodide content in the basal, intracellular, and apical compartments. Moreover, we determined the functional consequences of two naturally occurring mutations (L676Q and FS306>309X). In polarized Madin-Darby canine kidney cells, NIS mediates uptake at the basolateral membrane. Only minimal amounts of iodide reach the apical compartment in the absence of pendrin. In cells expressing NIS and pendrin, pendrin mediates transport of iodide into the apical chamber. Wild type pendrin also mediates iodide efflux in transiently transfected cells. In contrast, both pendrin mutants lose the ability to promote iodide efflux. These results provide evidence that pendrin mediates apical iodide efflux from polarized mammalian cells loaded with iodide. Consistent with the partial organification defect observed in patients with Pendred's syndrome, naturally occurring mutations of pendrin lead to impaired transport of iodide.  相似文献   

18.
Thyroid hormone is an essential regulator of developmental growth and metabolism in vertebrates. Iodine is a necessary constituent of thyroid hormone. Due to the scarcity and uneven distribution of iodine on the Earth's crust, the structure of the thyroid gland is adjusted to collect and store this element in order to secure a continuous supply of thyroid hormone throughout life. Still, disease resulting from hypothyroidism due to iodine deficiency is a global health problem, illustrating the great biological significance that iodine saving mechanisms have evolved. Iodide is accumulated together with prohormone (thyroglobulin) in the lumen of the thyroid follicles. The rate-limiting step of this transport is the sodium/iodide symporter located in the basolateral plasma membrane of the thyroid follicular cells. Iodide is also transferred across the apical plasma membrane into the lumen where hormonogenesis takes place. In this review, recent progress in the understanding of transepithelial iodide transport in the thyroid is summarized.  相似文献   

19.
Resveratrol is a polyphenol found in grapes and berries that has antioxidant, antiproliferative and anti-inflammatory properties. For these reasons, it is available as a dietary supplement, and it is under investigation in several clinical trials. Few data are available regarding the effects of resveratrol on thyroid function. A previous study showed that resveratrol transiently increases iodide influx in FRTL-5 rat thyroid cells. Indeed, this increase arises after short treatment times (6–12 h), and no further effects are seen after 24 h. The aim of the present study was to investigate the effects of resveratrol on iodide uptake and sodium/iodide symporter expression in thyroid cells after longer times of treatment. For this purpose, the effects of resveratrol were evaluated both in vitro and in vivo using the rat thyroid FRTL-5 cell line and Sprague-Dawley rats, respectively. In FRTL-5 cells, resveratrol decreased the sodium/iodide symporter RNA and protein expression as a function of time. Furthermore, resveratrol decreased cellular iodide uptake after 48 h of treatment. The inhibitory effect of resveratrol on iodide uptake was confirmed in vivo in Sprague-Dawley rats. This study demonstrates that with longer-term treatment, resveratrol is an inhibitor of sodium/iodide symporter gene expression and function in the thyroid. These data suggest that resveratrol can act as a thyroid disruptor, which indicates the need for caution as a supplement and in therapeutic use.  相似文献   

20.
Macejova D  Baranova M  Liska J  Brtko J 《Life sciences》2005,77(20):2584-2593
The aim of the study was to test the hypothesis that expression of retinoid receptors (RARalpha, RARbeta, RARgamma), rexinoid receptors (RXRalpha, RXRbeta), thyroid hormone receptors (TRalpha, TRbeta), estrogen receptors (ERalpha, ERbeta), nuclear receptor coregulators (N-CoR, SRC-1, SMRT), and in addition type I iodothyronine 5'-deiodinase (5'-DI), EGFR and erb-B2/neu would be different in mammary postlactating tissue in comparison with that of nonlactating mammary gland. Using RT-PCR, we have shown that expression of RARalpha, RXRalpha,TRalpha, ERalpha,ERbeta,N-CoR, SRC-1, SMRT and EGFR in rat was significantly increased in postlactating mammary gland when compared to that of nonlactating mammary tissue. Postlactating mammary glands were found to express all RAR and RXR subtypes studied when compared to nonlactating mammary tissues that express exclusively RARalpha and RXRalpha subtypes. Enhanced expression of a number of nuclear hormone receptors, their coregulators in mammary tissue of postlactating rats in comparison with nonlactating animals identify a potential role for retinoid, thyroid and estrogen signalling pathways also after lactation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号