共查询到20条相似文献,搜索用时 7 毫秒
1.
The mechanism of the oxidative cyclization reaction catalyzed by clavaminic acid synthase (CAS) was studied in silico. First, a classical molecular dynamics (MD) simulation was performed to obtain a realistic structure of the CAS-Fe(IV)=O-succinate-substrate complex; then potential of mean force (PMF) was calculated to assess the feasibility of the beta-lactam ring, more specifically its C4' corner, approaching the oxo atom. Based on the MD structure, a relatively large model of the active site region was selected and used in the B3LYP investigation of the reaction mechanism. The computational results suggest that once the oxoferryl species is formed, the oxidative cyclization catalyzed by CAS most likely involves either a mechanism involving C4'(S)-H bond cleavage of the monocyclic beta-lactam ring, or a biosynthetically unprecedented mechanism comprising (1) oxidation of the hydroxyl group of PCA to an O-radical, (2) retro-aldol-like decomposition of the O-radical to an aldehyde and a C-centered radical, which is stabilized by the captodative effect, (3) abstraction of a hydrogen atom from the C4'(S) position of the C-centered radical by the Fe(III)-OH species yielding an azomethine ylide, and (4) 1,3-dipolar cycloaddition to the ylide with aldehyde acting as a dipolarophile. Precedent for the new proposed mechanism comes from the reported synthesis of oxapenams via 1,3-dipolar cycloaddition reactions of aldehydes and ketones. 相似文献
2.
Biotin synthase (BioB) is a member of a family of enzymes that includes anaerobic ribonucleotide reductase and pyruvate formate lyase activating enzyme. These enzymes all use S-adenosylmethionine during turnover and contain three highly conserved cysteine residues that may act as ligands to an iron-sulfur cluster required for activity. Three mutant enzymes of BioB have been made, each with one cysteine residue (C53, 57, 60) mutated to alanine. All three mutant enzymes were inactive, but they still exhibited the characteristic UV-visible spectrum of a [2Fe-2S]2+ cluster similar to that of the wild-type enzyme. 相似文献
3.
S. W. Elson K. H. Baggaley S. Holland N. H. Nicholson J. T. Sime S. R. Woroniecki 《Bioorganic & medicinal chemistry letters》1992,2(12):1503-1508
Fifteen structural analogues of proclavaminic acid have been synthesised and incubated with enzyme preparations from Streptomyces clavuligerus in order to test the substrate specificity of the enzymes responsible for converting monocyclic β-lactams to bicyclic β-lactams. 相似文献
4.
Zhang Z Ren J Stammers DK Baldwin JE Harlos K Schofield CJ 《Nature structural biology》2000,7(2):127-133
Clavaminate synthase (CAS), a remarkable Fe(II)/2-oxoglutarate oxygenase, catalyzes three separate oxidative reactions in the biosynthesis of clavulanic acid, a clinically used inhibitor of serine beta-lactamases. The first CAS-catalyzed step (hydroxylation) is separated from the latter two (oxidative cyclization/desaturation) by the action of an amidinohydrolase. Here, we describe crystal structures of CAS in complex with Fe(II), 2-oxoglutarate (2OG) and substrates (N-alpha-acetyl-L-arginine and proclavaminic acid). They reveal how CAS catalyzes formation of the clavam nucleus, via a process unprecedented in synthetic organic chemistry, and suggest how it discriminates between substrates and controls reaction of its highly reactive ferryl intermediate. The presence of an unpredicted jelly roll beta-barrel core in CAS implies divergent evolution within the family of 2OG and related oxygenases. Comparison with other non-heme oxidases/oxygenases reveals flexibility in the position which dioxygen ligates to the iron, in contrast to the analogous heme-using enzymes. 相似文献
5.
Binding to the alpha subunit of tryptophan synthase induces extrinsic Cotton effects in the substrates indole (IND), indoleglycerol phosphate (IGP), and D-glyceraldehyde-3-P (D-GAP) and in the inhibitor indolepropanol phosphate (IPP). These effects disappear when the enzyme is denatured in guanidinium chloride. The induced circular dichroism (CD) was used to determine the dissociation constant and the number of binding sites for IPP. The dissociation constant so determined is equal to 48 muM and is in good agreement with the value of 48 muM obtained by equilibrium dialysis. From the temperature dependence of the dissociation constant, a value of -2.8 kcal/mol for the binding enthalpy was obtained. The determination of dissociation constants by means of extrinsic Cotton effects is shown to be quite feasible. CD competition experiments with glycerol phosphate (GP) suggest that IPP binds bifunctionally to the enzyme: via its indole part and its phosphate group. Indolepropanol, which lacks the phosphate group, does not show an extrinsic Cotton effect. Since the induced CD is strongly dependent on the binding geometry, the close similarity between the induced spectra in IPP and IGP is additional evidence that IPP is a good substrate analog. Binding to the enzyme results in a blue shift of the IPP fluorescence emission maximum. The dissociation constant determined by fluorescence titration equals 46 muM and agrees well with the values determined by the other two methods. Previous biochemical and fast kinetic studies suggested the existence of multiple conformational states for the enzyme and of ligand-induced conformational changes. No evidence was found in the far-uv CD spectra for conformational changes upon binding of IND and D-GAP. For IPP a very small effect was observed. 相似文献
6.
Calorimetric studies of the binding of ligands to aldolase 总被引:1,自引:0,他引:1
7.
With a view to identifying ligands that could be used as promoters of iron absorption, the affinity of a number of iron chelating agents and the efficiency with which they can donate iron to the brush border receptors has been studied. A number of organic and inorganic compounds were found to chelate iron and keep it soluble at pH 7.5 of the intestinal lumen. This ligand-bound iron was taken up by the intestinal brush border receptors with varying degree of efficiency; ascorbic acid being the most effective and EDTA and citrate the least effective in donating the chelated iron to the receptors. Several polyphosphate compounds, used as food additives, chelated iron and kept it in solution but showed moderate potency for donating iron to the receptors. 相似文献
8.
Sundriyal S Viswanad B Ramarao P Chakraborti AK Bharatam PV 《Bioorganic & medicinal chemistry letters》2008,18(18):4959-4962
A new series of PPARgamma ligands based on barbituric acid (BA) has been designed employing virtual screening and molecular docking approach. To validate the computational approach, designed molecules were synthesized and evaluated in in vitro radioligand binding studies. Out of the total 14 molecules, 6 were found to bind to the murine PPARgamma with IC(50) ranging from 0.1 to 2.5 microM as compared to reference standard, pioglitazone (IC(50)=0.7 microM). 相似文献
9.
Mössbauer parameters of frozen solutions of protoporphyrin IX iron(II) (containing either 2- methyl-piperidine or mercaptoethanol as the fifth iron ligand) that were exposed to oxygen before freezing are similar to those of oxyhaemoglobin. These results are discussed in relation to known porphyrin iron(II) chemistry. 相似文献
10.
Localization of an RNA binding element of the iron responsive element binding protein within a proteolytic fragment containing iron coordination ligands. 总被引:2,自引:1,他引:2
下载免费PDF全文

The iron responsive element binding protein (IRE-BP) regulates iron storage and uptake in response to iron. This control results from the interaction of the IRE-BP with the iron responsive element (IRE), a conserved sequence/structure element located near the 5' end of all ferritin mRNAs and in the 3' UTR of transferrin receptor mRNAs. Proteolysis was used to probe for functional elements of the IRE-BP. Partial chymotrypsin digestion generates a simple digestion pattern yielding fragments of 68, 56, 41, and 30 kDa. The 68 and 30 kDa fragments are derived from a single cleavage at Trp623. Further cleavages of the 68 kDa polypeptide yield the 56 and 41 kDa peptides. A combination of UV-crosslinking and chymotrypsin digestion was used to localize an RNA binding element within the C-terminus of the 68 kDa fragment, between amino acid residues 480 and 623. This region includes cysteine residues 503 and 506 which have been shown to be required for iron-sulfur cluster assembly and for iron regulation of the IRE-BP. Proteolytic fragments of the IRE-BP that contain this RNA binding region can be crosslinked to the IRE but do not bind with high affinity, suggesting that elements within the IRE-BP, in addition to those located between residues 480 and 623, are required for high affinity binding to the IRE. 相似文献
11.
Sequence and structural selectivity of nucleic acid binding ligands 总被引:22,自引:0,他引:22
The sequence and structural selectivity of 15 different DNA binding agents was explored using a novel, thermodynamically rigorous, competition dialysis procedure. In the competition dialysis method, 13 different nucleic acid structures were dialyzed against a common ligand solution. More ligand accumulated in the dialysis tube containing the structural form with the highest ligand binding affinity. DNA structural forms included in the assay ranged from single-stranded forms, through a variety of duplex forms, to multistranded triplex and tetraplex forms. Left-handed Z-DNA, RNA, and a DNA-RNA hybrid were also represented. Standard intercalators (ethidium, daunorubicin, and actinomycin D) served as control compounds and were found to show structural binding preferences fully consistent with their previously published behavior. Standard groove binding agents (DAPI, distamycin, and netropsin) showed a strong preference for AT-rich duplex DNA forms, along with apparently strong binding to the poly(dA)-[poly(dT)](2) triplex. Thermal denaturation studies revealed the apparent triplex binding to be complex, and perhaps to result from displacement of the third strand. Putative triplex (BePI, coralyne, and berberine) and tetraplex [H(2)TmPyP, 5,10,15, 20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine, and N-methyl mesoporphyrin IX] selective agents showed in many cases less dramatic binding selectivity than anticipated from published reports that compared their binding to only a few structural forms. Coralyne was found to bind strongly to single-stranded poly(dA), a novel and previously unreported interaction. Finally, three compounds (berenil, chromomycin A, and pyrenemethylamine) whose structural preferences are largely unknown were examined. Pyrenemethylamine exhibited an unexpected and unprecedented preference for duplex poly(dAdT). 相似文献
12.
The mechanism of 2'-deoxynucleotide binding to Lactobacillus casei thymidylate synthase was studied using stopped-flow kinetic techniques to monitor the decrease in intrinsic protein fluorescence upon complex formation. The data were consistent with a two-step mechanism involving a rapid preequilibrium step to form the enzyme-2'-deoxynucleotide complex followed by a slow isomerization step. Rate and equilibrium constants were determined for the three 2'-deoxynucleotides (2'-deoxyuridylate, 2'-deoxythymidylate, and 5-fluoro-2'-deoxyuridylate) as a function of temperature. Similar free energy changes were found for all 2'-deoxynucleotides; however, the enthalpy and entropy changes for each step of the reaction differed for each 2'-deoxynucleotide. The thermodynamic profiles indicated that the isomerization step stabilized the enzyme-2'-deoxynucleotide complex by an additional 1500 cal/mol. 相似文献
13.
14.
15.
Arun John Krishnakumar Subramanian 《Journal of biomolecular structure & dynamics》2017,35(6):1350-1366
Human fatty acid synthase (hFASN), a homo dimeric lipogenic enzyme with seven catalytic domains, is an important clinical target in cancer, metabolic syndrome and infections. Here, molecular modelling and docking methods were implemented to examine the inter-molecular interactions of thioesterase (TE) domain in hFASN with its physiological substrate, and to identify potential chemical inhibitors. TE catalyses the hydrolysis of thioester bond between palmitate and the 4’ phosphopantetheine of acyl carrier protein, releasing 16-carbon palmitate. The crystal structure of hFASN TE in two inhibitory conformations (A and B) were geometry-optimized and used for molecular docking with palmitate, orlistat (a known FASN inhibitor) and virtual screening against compounds from National Cancer Institute (NCI) database. Relatively, low binding affinity was observed during the complex formation of palmitate with A (?.164 kcal/mol) and B (?.332 kcal/mol) forms of TE, when compared with orlistat-docked TE (A form: ?5.872 kcal/mol and B form: ?5.484 kcal/mol), clearly indicating that the native inhibited conformation (crystal structure) was unfavourable for substrate binding. We used these orlistat dual binding modes as positive controls for prioritizing the ligands during virtual screening. From 2, 31,617 molecules in the NCI database, 916 high-scoring compounds (hit ligands) were obtained for A-form and 4582 for B-form of the TE-domain, which were then ranked according to glide docking score, XP H bond score, absorption, distribution, metabolism and excretion and binding free energy (Prime/MM-GBSA). Consequently, two top scoring ligands (NSC: 319661 and NSC: 153166) emerged as promising drug candidates that may be tested in FASN-over-expressing diseases. 相似文献
16.
The intestinal fatty acid binding protein (IFABP) is composed of two beta-sheets with a large hydrophobic cavity into which ligands bind. After eight 4-(19)F-phenylalanines were incorporated into the protein, the acid state of both apo- and holo-IFABP (at pH 2.8 and 2.3) was characterized by means of (1)H NMR diffusion measurements, circular dichroism, and (19)F NMR. Diffusion measurements show a moderately increased hydrodynamic radius while near- and far-UV CD measurements suggest that the acid state has substantial secondary structure as well as persistent tertiary interactions. At pH 2.8, these tertiary interactions have been further characterized by (19)F NMR and show an NOE cross-peak between residues that are located on different beta-strands. Side chain conformational heterogeneity on the millisecond time scale was captured by phase-sensitive (19)F-(19)F NOESY. At pH 2.3, native NMR peaks are mostly gone, but the protein can still bind fatty acid to form the holoprotein. An exchange cross-peak of one phenylalanine in the holoprotein is attributed to increased motional freedom of the fatty acid backbone caused by the slight opening of the binding pocket at pH 2.8. In the acid environment Phe128 and Phe17 show dramatic line broadening and chemical shift changes, reflecting greater degrees of motion around these residues. We propose that there is a separation of specific regions of the protein that gives rise to the larger radius of hydration. Temperature and urea unfolding studies indicate that persistent hydrophobic clusters are nativelike and may account for the ability of ligand to bind and induce nativelike structure, even at pH 2.3. 相似文献
17.
Advances in x-ray crystallographic data collection, structure solution, and refinement/validation have reduced the time required and expanded the range of samples amenable to x-ray crystallographic studies. Consequently, we can now collect complete atomic resolution data sets on physically smaller crystals and solve larger problems by direct methods beyond what could have been accomplished even five years ago. Applying these improved methods to the study of opioid ligands has enhanced our knowledge of the opioid pharmacophore. Despite considerable progress, it is still difficult to define the pharmacophoric parameters required for highly selective and potent opioid peptides. In part this is due to the conformational flexibility remaining even in conformationally constrained peptides. 相似文献
18.
Ultraviolet difference spectroscopy has been used to study Fe (III)-apoferritin complexes formed after addition of Fe (II) to apoferritin in air. At constant iron, the recorded spectra varied with time after Fe (II) addition and with the number of iron atoms/molecule (protein concentration). The results indicate that after production of an initial complex, rearrangement or migration of Fe (III) atoms occurs, with polynuclear species forming as end-product, probably by hydrolytic polymerization. The presence of Tb3+ or Zn2+ ions affected the Fe (III) spectra and their development in different ways. The combined data suggest that more than one site, or processes, are involved in ferritin iron-core formation and that some of the metal sites are clustered. 相似文献
19.
This study was undertaken to investigate the influence of fatty acid binding on the unfolding of HSA and how the fatty acid molecules can influence and/or compete with other ligand molecules bound to the protein. The equilibrium unfolding of fatted and fatty acid free HSA was measured by overlapping of unfolding transition curves monitored by different probes for secondary and tertiary structure and determining changes in free energy of unfolding. Proteins stability was studied by fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism techniques. We have suggested a "molten globule" like intermediate state of HSA at a fairly high concentration of GnHCl (3.2 for fatty acid free and 3.6 for fatted). The free energy of stabilization (DeltaG(D)(H2O)) in the presence of fatty acid was found to be 900 cal mol(-1). We also analyze the effects of fatty acid on binding of ligands using spectroscopic technique and reported the equilibrium constants and free energies obtained from the binding and unfolding experiments. 相似文献
20.
《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(12):2257-2264
N-acetylneuraminic acid (NeuNAc), the most naturally abundant sialic acid, is incorporated as the terminal residue of mammalian cell surface glycoconjugates and acts as a key facilitator of cellular recognition, adhesion and signalling. Several pathogenic bacteria similarly express NeuNAc on their cell surfaces, allowing evasion of their host's immune system. Prokaryotic NeuNAc biosynthesis proceeds via condensation of phosphoenolpyruvate (PEP) with N-acetylmannosamine (ManNAc), a reaction catalysed by the domain-swapped homodimeric enzyme, N-acetylneuraminic acid synthase (NeuNAcS). Conversely, the mammalian orthologue, N-acetylneuraminic acid 9-phosphate synthase (NeuNAc 9-PS) utilises the phosphorylated substrate N-acetylmannosamine 6-phosphate (ManNAc 6-P) in catalysis. Here we report an investigation into the determinants of substrate specificity of human NeuNAc 9-PS, using model-guided mutagenesis to delineate binding interactions with ManNAc 6-P. Modelling predicts the formation of a domain-swapped homodimer as observed for bacterial variants, which was supported by experimental small angle X-ray scattering. A number of conserved residues which may play key roles in the selection of ManNAc 6-P were identified and substituted for alanine to assess their function. Lys290 and Thr80 were identified as a putative phosphate binding pair, with the cationic lysine residue extending into the active site from the adjacent chain of the dimeric enzyme. Substitution of these residues results in a significant loss of activity and reduced affinity for ManNAc 6-P. These residues, along with the electropositive β2α2 loop, are likely to facilitate the PEP dependent binding and stabilisation of ManNAc 6-P. By utilising a phosphorylated sugar-substrate, the mammalian enzyme gains considerable catalytic affinity advantage over its bacterial counterpart. 相似文献