首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various Escherichia coli mutant strains designed for succinate production under aerobic conditions were characterized in chemostat. The metabolite profiles, enzyme activities, and gene expression profiles were studied to better understand the metabolic network operating in these mutant strains. The most efficient succinate producing mutant strain HL27659k was able to achieve a succinate yield of 0.91 mol/mol glucose at a dilution rate of 0.1/h. This strain has the five following mutations: sdhAB, (ackA-pta), poxB, iclR, and ptsG. Four other strains involved in this study were HL2765k, HL276k, HL2761k, and HL51276k. Strain HL2765k has mutations in sdhAB, (ackA-pta), poxB and iclR, strain HL276k has mutations in sdhAB, (ackA-pta) and poxB, strain HL2761k has mutations in sdhAB, (ackA-pta), poxB and icd, and strain HL51276k has mutations in iclR, icd, sdhAB, (ackA-pta) and poxB. Enzyme activity data showed strain HL27659k has substantially higher citrate synthase and malate dehydrogenase activities than the other four strains. The data also showed that only iclR mutation strains exhibited isocitrate lyase and malate synthase activities. Gene expression profiles also complemented the studies of enzyme activity and metabolites from chemostat cultures. The results showed that the succinate synthesis pathways engineered in strain HL27659k were highly efficient, yielding succinate as the only major product produced under aerobic conditions. Strain HL27659k was the only strain without pyruvate accumulation, and its acetate production was the least among all the mutant strains examined.  相似文献   

2.
An adhE, ldhA double mutant Escherichia coli strain, SBS110MG, has been constructed to produce succinic acid in the presence of heterologous pyruvate carboxylase (PYC). The strategic design aims at diverting maximum quantities of NADH for succinate synthesis by inactivation of NADH competing pathways to increase succinate yield and productivity. Additionally an operational PFL enzyme allows formation of acetyl-CoA for biosynthesis and formate as a potential source of reducing equivalents. Furthermore, PYC diverts pyruvate toward OAA to favor succinate generation. SBS110MG harboring plasmid pHL413, which encodes the heterologous pyruvate carboxylase from Lactococcus lactis, produced 15.6 g/L (132 mM) of succinate from 18.7 g/L (104 mM) of glucose after 24 h of culture in an atmosphere of CO(2) yielding 1.3 mol of succinate per mole of glucose. This molar yield exceeded the maximum theoretical yield of succinate that can be achieved from glucose (1 mol/mol) under anaerobic conditions in terms of NADH balance. The current work further explores the importance of the presence of formate as a source of reducing equivalents in SBS110MG(pHL413). Inactivation of the native formate dehydrogenase pathway (FDH) in this strain significantly reduced succinate yield, suggesting that reducing power was lost in the form of formate. Additionally we investigated the effect of ptsG inactivation in SBS110MG(pHL413) to evaluate the possibility of a further increase in succinate yield. Elimination of the ptsG system increased the succinate yield to 1.4 mol/mol at the expense of a reduction in glucose consumption of 33%. In the presence of PYC and an efficient conversion of glucose to products, the ptsG mutation is not indispensable since PEP converted to pyruvate as a result of glucose phosphorylation by the glucose specific PTS permease EIICB(glu) can be rediverted toward OAA favoring succinate production.  相似文献   

3.
Succinic acid has drawn much interest as a precursor of many industrially important chemicals. Using a variety of feedstocks for the bio-production of succinic acid would be economically beneficial to future industrial processes. Escherichia coli SBS550MG is able to grow on both glucose and fructose, but not on sucrose. Therefore, we derived a SBS550MG strain bearing both the pHL413 plasmid, which contains Lactococcus lactis pycA gene, and the pUR400 plasmid, which contains the scrK, Y, A, B, and R genes for sucrose uptake and catalyzation. Succinic acid production by this modified strain and the SBS550pHL413 strain was tested on fructose, sucrose, a mixture of glucose and fructose, a mixture of glucose, fructose and sucrose, and sucrose hydrolysis solution. The modified strain can produce succinic acid efficiently from all combinations of different carbon sources tested with minimal byproduct formation and with high molar succinate yields close to that of the maximum theoretic values. The molar succinic acid yield from fructose was the highest among the carbon sources tested. Using the mixture of glucose and fructose as the carbon source resulted in slightly lower yields and much higher productivity than using fructose alone. Fermenting sucrose mixed with fructose and glucose gave a 1.76-fold higher productivity than that when sucrose was used as the sole carbon source. Using sucrose pretreated with sulfuric acid as carbon source resulted in a similar succinic acid yield and productivity as that when using the mixture of sucrose, fructose, and glucose. The results of the effect of agitation rate in aerobic phase on succinate production showed that supplying large amount of oxygen in aerobic phase resulted in higher productions of formate and acetate, and therefore lower succinate yield. This study suggests that fructose, sucrose, mixture of glucose and fructose, mixture of glucose, fructose and sucrose, or sucrose hydrolysis solution could be used for the economical and efficient production of succinic acid by our metabolic engineered E. coli strain.  相似文献   

4.
An aerobic succinate production system developed by Lin et al. (Metab Eng, in press) is capable of achieving the maximum theoretical succinate yield of 1.0 mol/mol glucose for aerobic conditions. It also exhibits high succinate productivity. This succinate production system is a mutant E. coli strain with five pathways inactivated: DeltasdhAB, Delta(ackA-pta), DeltapoxB, DeltaiclR, and DeltaptsG. The mutant strain also overexpresses Sorghum vulgare pepc. This mutant strain is designated HL27659k(pKK313). Fed-batch reactor experiments were performed for the strain HL27659k(pKK313) under aerobic conditions to determine and demonstrate its capacity for high-level succinate production. Results showed that it could produce 58.3 g/l of succinate in 59 h under complete aerobic conditions. Throughout the entire fermentation the average succinate yield was 0.94+/-0.07 mol/mol glucose, the average productivity was 1.08+/-0.06 g/l-h, and the average specific productivity was 89.77+/-3.40 mg/g-h. Strain HL27659k (pKK313) is, thus, capable of large-scale succinate production under aerobic conditions. The results also showed that the aerobic succinate production system using the designed strain HL27659k(pKK313) is more practical than conventional anaerobic succinate production systems. It has remarkable potential for industrial-scale succinate production and process optimization.  相似文献   

5.
In this study, the expression level of the pyc gene from Lactococcus lactis was fine tuned to improve succinate production in Escherichia coli SBS550MG. IPTG induction in the cultures of SBS550MG with pHL413, a positive control plasmid previously constructed (Sanchez et al., 2005), gave drastically decreased PYC activity and succinate yield. We constructed several plasmids for the expression of pyc to change copy number and variant promoters. Among the constructs, as compared to pHL413, the PYC activity dropped significantly with the Plac, Ptac, Ptrc or native Ppyc promoters in medium or high copy vectors, which resulted in a decrease in succinate yield. Three constructs pThio12, pHL413-Km, and pHL413-Km(lacIq-)N showed considerable PYC activity and improved succinate production in E. coli SBS550MG. The native Ppyc promoter was also modified in order to vary pyc expression levels by site-directed mutagenesis of the −10, −35, −44 regions, and the spacer regions between −10 to −35 and −35 to −44 regions. Out of 9 native promoter variants, the MIII variant resulted in a 20% increase in PYC activity, and improved succinate yield in SBS550MG. We also determined the copy number and stability of pHL413 and pHL413-Km. The two plasmids showed roughly the same copy number, but the pHL413-Km plasmid was relatively more stable. This study provides more understanding of the plasmid characteristics and fine tuning of the expression level of pyc for optimization of the succinate production processes.  相似文献   

6.
This study presents an in-depth analysis of the anaerobic metabolic fluxes of various mutant strains of Escherichia coli overexpressing the Lactococcus lactis pyruvate carboxylase (PYC) for the production of succinate. Previously, a metabolic network design that includes an active glyoxylate pathway implemented in vivo increased succinate yield from glucose in an E. coli mutant to 1.6 mol/mol under fully anaerobic conditions. The design consists of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has a lower NADH requirement). Mutant strains previously constructed during the development of high-yield succinate-producing strains were selected for further characterization to understand their metabolic response as a result of several genetic manipulations and to determine the significance of the fermentative and the glyoxylate pathways in the production of succinate. Measured fluxes obtained under batch cultivation conditions were used to estimate intracellular fluxes and identify critical branch point flux split ratios. The comparison of changes in branch point flux split ratios to the glyoxylate pathway and the fermentative pathway at the oxaloacetate (OAA) node as a result of different mutations revealed the sensitivity of succinate yield to these manipulations. The most favorable split ratio to obtain the highest succinate yield was the fractional partition of OAA to glyoxylate of 0.32 and 0.68 to the fermentative pathway obtained in strains SBS550MG (pHL413) and SBS990MG (pHL413). The succinate yields achieved in these two strains were 1.6 and 1.7 mol/mol, respectively. In addition, an active glyoxylate pathway in an ldhA, adhE, ack-pta mutant strain is shown to be responsible for the high succinate yields achieved anaerobically. Furthermore, in vitro activity measurements of seven crucial enzymes involved in the pathways studied and intracellular measurements of key intermediate metabolite pools provided additional insights on the physiological perturbations caused by these mutations. The characterization of these recombinant mutant strains in terms of flux distribution pattern, in vitro enzyme activity and intracellular metabolite pools provides useful information for the rational modification of metabolic fluxes to improve succinate production.  相似文献   

7.
Several metabolic engineered Escherichia coli strains were constructed and evaluated for four-carbon dicarboxylic acid production. Fumarase A, fumarase B and fumarase C single, double and triple mutants were constructed in a ldhA adhE mutant background overexpressing the pyruvate carboxylase from Lactococcus lactis. All the mutants produced succinate as the main four-carbon (C4) dicarboxylic acid product when glucose was used as carbon source with the exception of the fumAC and the triple fumB fumAC deletion strains, where malate was the main C4-product with a yield of 0.61–0.67 mol (mole glucose)?1. Additionally, a mdh mutant strain and a previously engineered high-succinate-producing strain (SBS550MG-Cms pHL413-Km) were investigated for aerobic malate production from succinate. These strains produced 40.38 mM (5.41 g/L) and 50.34 mM (6.75 g/L) malate with a molar yield of 0.53 and 0.55 mol (mole succinate)?1, respectively. Finally, by exploiting the high-succinate production capability, the strain SBS550MG-Cms243 pHL413-Km showed significant malate production in a two-stage process from glucose. This strain produced 133 mM (17.83 g/L) malate in 47 h, with a high yield of 1.3 mol (mole glucose)?1 and productivity of 0.38 g L?1 h?1.  相似文献   

8.
9.
Escherichia coli HD701, a hydrogenase-upregulated strain, has the potential for industrial-scale H2 production but is unable to metabolise sucrose, which is a major constituent of many waste materials that could be used as feedstocks for H2 production processes. A 70 kb plasmid (pUR400), which carries the genes necessary for sucrose transport into the cell and its metabolism, was conjugated into E. coli strains HD701 and FTD701 [a derivative of HD701 which has a deletion of the tatC gene of the twin arginine transport (Tat) protein system] from an E. coli K12 strain. Comparative studies on H2 evolution by FTD701 and HD701, with and without the pUR400 plasmid, were made using sucrose as substrate. The parental strains did not evolve H2, although HD701/pUR400 and FTD701/pUR400 evolved 1.27 ± 0.09 and 1.38 ± 0.05 ml H2 mg dry wt–1 l culture–1, respectively over 10 h. This work provides the choice for using a recombinant E. coli strain, which produces H2 from sucrose, as an alternative to coupling-in an upstream invertase, and hence this provides a simpler method for the bioproduction of H2 from sucrose.Revisions requested 24 August 204; Revisions received 21 October 2004  相似文献   

10.
The conjugative plasmid pUR400 determines tetracycline resistance and enables cells of Escherichia coli K-12 to utilize sucrose as the sole carbon source. Three types of mutants affecting sucrose metabolism were derived from pUR400. One type lacked a specific transport system (srcA); another lacked sucrose-6-phosphate hydrolase (scrB); and the third, a regulatory mutant, expressed both of these functions constitutively (scrR). In a strain harboring pUR400, both transport and sucrose-6-phosphate hydrolase were inducible by fructose, sucrose, and raffinose; if a scrB mutant was used, fructose was the only inducer. These data suggested that fructose or a derivative acted as an endogenous inducer. Sucrose transport and sucrose-6-phosphate hydrolase were subject to catabolite repression; these two functions were not expressed in an E. coli host (of pUR400) deficient in the adenosine 3-,5'-phosphate receptor protein. Sucrose uptake (apparent Km = 10 microM) was dependent on the scrA gene product and on the phosphoenolpyruvate-dependent sugar:phosphotransferase system (PTS) of the host. The product of sucrose uptake (via group translocation) was identified as sucrose-6-phosphate, phosphorylated at C6 of the glucose moiety. Intracellular sucrose-6-phosphate hydrolase catalyzed the hydrolysis of sucrose-6-phosphate (Km = 0.17 mM), sucrose (Km = 60 mM), and raffinose (Km = 150 mM). The active enzyme was shown to be a dimer of Mr 110,000.  相似文献   

11.
A metabolically engineered Escherichia coli strain SBS550MG (pHL413) was used in this study to investigate the impact of various culture operating conditions for improving the specific succinate production rate for better final titer while maintaining the theoretical succinate yield on glucose in multiphase fed-batch cultures. Previously, we reported that changes in the level of aeration during the cell growth phase significantly modified gene expression profiles and metabolic fluxes in this system (Martinez et al. 2010). Based on these observations, the examination of culture conditions was mainly focused on the aerobic growth phase. It was found that 2–5 h of low dissolved oxygen culture during the aerobic phase improves cell productivity, but pH control during the aerobic phase was not favorable for the system. Cell viability has been identified as a major limiting factor for succinate production. Supplementing LB medium and betaine, an anti-osmotic stress reagent, did not improve cell activity. A higher succinate titer (537.8 mM) using the current metabolic engineering E. coli strain was achieved, which can potentially be improved further by increasing cell viability.  相似文献   

12.
Corynebacterium glutamicum lacking the succinate dehydrogenase complex can produce succinate aerobically with acetate representing the major byproduct. Efforts to increase succinate production involved deletion of acetate formation pathways and overexpression of anaplerotic pathways, but acetate formation could not be completely eliminated. To address this issue, we constructed a pathway for recycling wasted carbon in succinate-producing C. glutamicum. The acetyl-CoA synthetase from Bacillus subtilis was heterologously introduced into C. glutamicum for the first time. The engineered strain ZX1 (pEacsA) did not secrete acetate and produced succinate with a yield of 0.50 mol (mol glucose)−1. Moreover, in order to drive more carbon towards succinate biosynthesis, the native citrate synthase encoded by gltA was overexpressed, leading to strain ZX1 (pEacsAgltA), which showed a 22% increase in succinate yield and a 62% decrease in pyruvate yield compared to strain ZX1 (pEacsA). In fed-batch cultivations, strain ZX1 (pEacsAgltA) produced 241 mM succinate with an average volumetric productivity of 3.55 mM h−1 and an average yield of 0.63 mol (mol glucose) −1, making it a promising platform for the aerobic production of succinate at large scale.  相似文献   

13.
Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production.  相似文献   

14.
Sorghum vulgare phosphoenolpyruvate carboxylase (PEPC) and Lactococcus lactis pyruvate carboxylase (PYC) were overexpressed in Escherichia coli concurrently to improve the production of succinate, a valuable industrial specialty chemical. This coexpression system was also applied to E. coli mutant strains strategically designed by inactivating the competing pathways of succinate formation. The highest level of succinate production was observed in E. coli strains coexpressing both PEPC and PYC when compared with E. coli strains individually overexpressing either PEPC or PYC. Lactate production was also significantly reduced with PEPC and PYC coexpression. Lactate and acetate pathways were inactivated to eliminate the competing pathways of succinate formation. Results showed that inactivation of both the lactate and acetate pathways with the coexpression of PEPC and PYC was most effective in improving succinate production. Inactivating the lactate or acetate pathway alone only caused a majority of the carbon flux to shift to other metabolites rather than succinate. Coexpression of PEPC and PYC was also applied to an E. coli mutant strain deficient in lactate dehydrogenase and pyruvate:formate lyase that accumulated a substantial amount of the intermediate metabolite pyruvate during growth. Results showed that PEPC and PYC coexpression was effective in depleting pyruvate accumulation and increasing the production of metabolites.  相似文献   

15.
This work aimed to identify the key operational factors that significantly affect succinate production by the high succinate producing Escherichia coli strain SBS550MG (pHL413), which bears mutations inactivating genes adhE ldhA iclR ackpta::Cm(R) and overexpresses the pyruvate carboxylase from Lactococcus lactis. The considered factors included glucose concentration, cell density, CO(2) concentration in the gas stream, pH, and temperature. The results showed that high glucose concentrations inhibited succinate production and that there is a compromise between the total succinate productivity and succinate specific productivity, where the total productivity increased with the increase in cell density and the specific productivity decreased with cell density, probably due to mass transfer limitation. On the other hand, a CO(2) concentration of 100% in the gas stream showed the highest specific succinate productivity, probably by favoring pyruvate carboxylation, increasing the OAA pool that later is converted into succinate. A full factorial design of experiments was applied to analyze the pH and temperature effects on succinate production in batch bioreactors, where succinate yield was not significantly affected by either temperature (37 to 43°C) or pH (6.5 to 7.5). Additionally, the temperature effect on succinate productivity and titer was not significant, in the range tested. On the other hand, a pH of 6.5 showed very low productivity, whereas pH values of 7.0 and 7.5 resulted in significantly higher specific productivities and higher titers. The increase on pH value from 7.0 to 7.5 did not show significant improvement. Then, pH 7.0 should be chosen because it involves a lower cost in base addition.  相似文献   

16.
The major growth yield of a prototrophic strain of Bacillus stearothermophilus under aerobic conditions on salts medium containing ammonium nitrate as the nitrogen source and glucose or succinate as the carbon source was maximal at the lowest growth temperature employed and decreased steadily as the temperature was raised. The temperature optima for growth yield and for growth rate were thus different. The molar growth yield values of the thermophile, especially at the lower growth temperatures, were similar to those reported for aerobically grown mesophilic bacteria, both on glucose and on succinate. At the higher growth temperatures, a lower proportion of glucose carbon was incorporated into cells and a correspondingly greater proportion was left incompletely utilized in the medium, mostly as acetate. This suggests a greater inefficiency in the coordination of the nonoxidative and oxidative phases of glucose metabolism at the gigher temperatures. Another factor causing a decreased cell yield at higher temperatures was possibly an uncoupling of energy production from respiration. The rates of respiration by intact cells of the thermophile on glucose and on succinate followed the Arrhenius relationship from 55 C to 20 C, which is some 20 C below the minimal growth temperature of the organism. The Arrhenius constant was 17.1 kcal/mol for glucose oxidation and 13.5 kcal/mol for succinate oxidation. These results are comparable to those reported for some mesophiles, and they suggest that the inability of the thermophile to grow at temperatures below about 41 C is not due to an abnormally high temperature coefficient for the uptake and oxidation of the carbon source.  相似文献   

17.
【背景】Escherichia coli AFP111发酵生产丁二酸时大量副产乙酸,丁二酸得率低。【目的】代谢工程改造EscherichiacoliAFP111,提高丁二酸得率,降低副产物乙酸的生成,建立100 L规模的丁二酸发酵工艺。【方法】一步同源重组敲除乙酸合成途径关键酶基因,改造丁二酸合成途径关键酶启动子实现过表达;单因素优化5L发酵罐培养条件。【结果】敲除乙酸产生途径编码乙酸激酶和磷酸转乙酰酶的基因ackA-pta、苏氨酸脱羧酶和2-酮丁酸甲酸裂解酶的基因tdcDE获得SX02菌株,摇瓶发酵条件下其乙酸产量下降了53.42%,丁二酸得率提高9.85%。在SX02菌株基础上,经启动子改造过表达编码葡萄糖激酶的基因glk后获得菌株SX03,其Glk酶活性提高3.66倍,乙酸产量下降了31.62%,丁二酸得率提高8.28%。SX03菌株发酵生产丁二酸在5 L发酵罐进行放大,其乙酸产量为3.97 g/L,丁二酸得率为1.62 mol/mol葡萄糖,相比出发菌株的乙酸产量下降了75.76%,丁二酸得率提高19.12%。在5L发酵罐上对比研究了中和剂Na2CO3和NaOH混合液替换碱式MgCO3的发酵效果,并优化了发酵pH、搅拌转速和葡萄糖浓度,获得如下最适发酵条件:pH6.8,搅拌转速250r/min,葡萄糖100g/L,发酵结束时乙酸产量为2.24 g/L,丁二酸得率为1.66 mol/mol葡萄糖。中和剂替换优化后乙酸产量下降了20.65%,丁二酸得率提高2.47%。菌株SX03发酵工艺进一步在100 L发酵罐上实现放大,其乙酸产量为1.91 g/L,丁二酸得率为1.30 mol/mol葡萄糖。【结论】通过代谢工程改造的大肠杆菌,其副产物乙酸含量显著下降,丁二酸得率提高,并在5 L和100 L发酵罐上实现了工艺放大,展现出较大的工业化利用潜力。  相似文献   

18.
Fermentation patterns of Escherichia coli with and without the phosphoenolpyruvate carboxylase (PPC) and pyruvate carboxylase (PYC) enzymes were compared under anaerobic conditions with glucose as a carbon source. Time profiles of glucose and fermentation product concentrations were determined and used to calculate metabolic fluxes through central carbon pathways during exponential cell growth. The presence of the Rhizobium etli pyc gene in E. coli (JCL1242/pTrc99A-pyc) restored the succinate producing ability of E. coli ppc null mutants (JCL1242), with PYC competing favorably with both pyruvate formate lyase and lactate dehydrogenase. Succinate formation was slightly greater by JCL1242/pTrc99A-pyc than by cells which overproduced PPC (JCL1242/pPC201, ppc(+)), even though PPC activity in cell extracts of JCL1242/pPC201 (ppc(+)) was 40-fold greater than PYC activity in extracts of JCL1242/pTrc99a-pyc. Flux calculations indicate that during anaerobic metabolism the pyc(+) strain had a 34% greater specific glucose consumption rate, a 37% greater specific rate of ATP formation, and a 6% greater specific growth rate compared to the ppc(+) strain. In light of the important position of pyruvate at the juncture of NADH-generating pathways and NADH-dissimilating branches, the results show that when PPC or PYC is expressed, the metabolic network adapts by altering the flux to lactate and the molar ratio of ethanol to acetate formation.  相似文献   

19.
Sucrose-positive derivatives of Escherichia coli K-12, containing the plasmid pUR400, and of Klebsiella pneumoniae hydrolyse intracellular sucrose 6-phosphate by means of an invertase into D-glucose 6-phosphate and free D-fructose. The latter is phosphorylated by an ATP-dependent fructokinase (gene scrK of an scr regulon) to D-fructose 6-phosphate. The lack of ScrK does not cause any visible phenotype in wild-type strains of both organisms. Using genes and enzymes normally involved in D-arabinitol metabolism from E. coli C and K. pneumoniae, derivatives of E. coli K-12 were constructed which allowed the identification of scrK mutations on conventional indicator plates. Cloning and sequencing of scrK from sucrose plasmid pUR400 and from the chromosome of K. pneumoniae revealed an open reading frame of 924 bp in both cases--the equivalent of a peptide containing 307 amino acid residues (Mr 39 and 34 kDa, respectively, on sodium dodecyl sulphate gels). The sequences showed overall identity among each other (69% identical residues) and to a kinase from Vibrio alginolyticus (57%) also involved in sucrose metabolism, lower overall identity (39%) to a D-ribose-kinase from E. coli, and local similarity to prokaryotic, and eukaryotic phosphofructokinases at the putative ATP-binding sites.  相似文献   

20.
The potential to produce succinate aerobically in Escherichia coli would offer great advantages over anaerobic fermentation in terms of faster biomass generation, carbon throughput, and product formation. Genetic manipulations were performed on two aerobic succinate production systems to increase their succinate yield and productivity. One of the aerobic succinate production systems developed earlier (Biotechnol, Bioeng., 2004, accepted) was constructed with five mutations (DeltasdhAB, Deltaicd, DeltaiclR, DeltapoxB, and Delta(ackA-pta)), which created a highly active glyoxylate cycle. In this study, a second production system was constructed with four of the five above mutations (DeltasdhAB, DeltaiclR, DeltapoxB, and Delta(ackA-pta)). This system has two routes in the aerobic central metabolism for succinate production. One is the glyoxylate cycle and the other is the oxidative branch of the TCA cycle. Inactivation of ptsG and overexpression of a mutant Sorghum pepc in these two production systems showed that the maximum theoretical succinate yield of 1.0 mol/mol glucose consumed could be achieved. Furthermore, the two-route production system with ptsG inactivation and pepc overexpression demonstrated substantially higher succinate productivity than the previous system, a level unsurpassed for aerobic succinate production. This optimized system showed remarkable potential for large-scale aerobic succinate production and process optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号