首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The placenta is a glucocorticoid target organ, and glucocorticoids (GCs) are essential for the development and maturation of fetal organs. They are widely used for treatment of a variety of diseases during pregnancy. In various tissues, GCs have regulated by glucose transport systems; however, their effects on glucose transporters in the human placental endothelial cells (HPECs) are unknown. In the present study, HPECs were cultured 24 h in the presence or absence of 0·5, 5 and 50 µmol·l–1 of synthetic GC triamcinolone (TA). The glucose carrier proteins GLUT 1, GLUT 3 and GC receptor (GR) were detected in the HPECs. We showed increased expression of GLUT 1 and GLUT 3 proteins and messenger RNA (mRNA) levels (p < 0·05) after 24‐h cell culture in the presence of 0·5, 5 and 50 µmol·l‐1 of TA. In contrast, GR protein and mRNA expressions were down‐regulated (p < 0·05) with 0·5, 5 and 50 µmol·l–1 of TA 24‐h cell culture. The results demonstrate that GCs are potent regulators of placental GLUT 1 and GLUT 3 expression through GR. Excessive exposure to GCs causes maternal and fetal hypoglycemia and diminished fetal growth. We speculate that to compensate for fetal hypoglycemia and diminished fetal growth, the expression of placental endothelial glucose transporters might be increased. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In vitro copper (II) complex presents antimitotic effects. In this work, we have studied the in vivo seasonal toxic effects of copper (II), ligand (H2L) and the complex [Cu(H2L)(H2O)2]Cl2·4H2O in male Swiss mice. During spring, an i.p. injection of CuCl2 in aqueous NaCl (9 g·l-1) up to 0.05 µmol·kg-1 b.w. (body weight) killed 60% of the rodents after 6 days. LD100 was up to 0.3 µmol·kg-1; H2L was well tolerated, while the complex was 30% lethal with 50 µmol·kg-1. In autumn, mice were less sensitive to CuCl2, and both ligand and complex were equally tolerated and this leads to the conclusion that, in vivo, chronotoxicities of copper (II) and complex in NaCl aqueous solutions are quite different in spring and autumn seasons.  相似文献   

3.
Aims: To overproduce erythromycin C, B or D and evaluate the effect of disruption of tailoring genes eryK and eryG in an industrial erythromycin producer. Methods and Results: The tailoring genes eryG and eryK were inactivated individually or simultaneously by targeted gene disruption in an industrial strain Saccharopolyspora erythraea HL3168 E3, resulting in the overproduction of erythromycin C (2·48 g l?1), B (1·70 g l?1) or D (2·15 g l?1) in the mutant strain QL‐G, QL‐K or QL‐KG, respectively. Analysis of the erythromycin congeners throughout the fermentation indicated that, at the end of fermentation, comparatively large amount of erythromycin D (0·67 g l?1) was accumulated in QL‐G, whereas only small amount of erythromycin D (0·10 g l?1) was produced in QL‐K. Conclusions: Inactivation of tailoring genes eryG and eryK in the high producer did not affect the biosynthesis of erythromycin. However, erythromycin D could be more efficiently methylated by EryG than be hydroxylated by EryK. Significance and Impact of the Study: Development of the mutant strains provides a method for the economical large‐scale production of potent lead compounds. The information about the accumulation and conversion of erythromycins in the industrial strains may contribute to further improving erythromycin production.  相似文献   

4.
This study presents data collected over a 6 year period on the effects of extremely low‐frequency magnetic fields (MFs) (1·4–1·6 µT, 500 Hz and 1·4–1·6 µT, 72·5 Hz) and MFs in combination with other environmental stressors (elevated temperature, 0·01 mg l?1 trichlorfon, 0·01 mg l?1 copper sulphate pentahydrate) on roach Rutilus rutilus embryos. Effects were studied during different stages of early development. Rutilus rutilus were raised in ponds for 4 months after exposure to MFs. The mass, standard length (LS) and morphological characteristics of underyearlings which were exposed as embryos were recorded. An increase in embryo mortality and a decrease in LS and mass indices in underyearlings were noted after they had been exposed to a combination of MFs and different adverse environmental factors. In addition, exposure to MFs led to changes in the total number of vertebrae and the number of seismosensory system openings in the mandibular bones of underyearlings. MFs of different frequency caused both increases (500 Hz) and decreases (72·5 Hz) in morphological diversity. The stressors used in this study, however, did not increase the fluctuating asymmetry of bilateral morphological characteristics. The possible microevolutionary effects of exposure to MFs alone and in combination with other adverse environmental factors upon natural fish populations are discussed.  相似文献   

5.
Aims: To analyse the production of different metabolites by dark‐grown Euglena gracilis under conditions found to render high cell growth. Methods and Results: The combination of glutamate (5 g l?1), malate (2 g l?1) and ethanol (10 ml l?1) (GM + EtOH); glutamate (7·15 g l?1) and ethanol (10 ml l?1); or malate (8·16 g l?1), glucose (10·6 g l?1) and NH4Cl (1·8 g l?1) as carbon and nitrogen sources, promoted an increase of 5·6, 3·7 and 2·6‐fold, respectively, in biomass concentration in comparison with glutamate and malate (GM). In turn, the production of α‐tocopherol after 120 h identified by LC‐MS was 3·7 ± 0·2, 2·4 ± 0·1 and 2 ± 0·1 mg [g dry weight (DW)]?1, respectively, while in the control medium (GM) it was 0·72 ± 0·1 mg (g DW)?1. For paramylon synthesis, the addition of EtOH or glucose induced a higher production. Amino acids were assayed by RP‐HPLC; Tyr a tocopherol precursor and Ala an amino acid with antioxidant activity were the amino acids synthesized at higher concentration. Conclusions: Dark‐grown E. gracilis Z is a suitable source for the generation of the biotechnologically relevant metabolites tyrosine, α‐tocopherol and paramylon. Significance and Impact of the Study: By combining different carbon and nitrogen sources and inducing a tolerable stress to the cell by adding ethanol, it was possible to increase the production of biomass, paramylon, α‐tocopherol and some amino acids. The concentrations of α‐tocopherol achieved in this study are higher than others reported previously for Euglena, plant and algal systems. This work helps to understand the effect of different carbon sources on the synthesis of bio‐molecules by E. gracilis and can be used as a basis for future works to improve the production of different metabolites of biotechnological importance by this organism.  相似文献   

6.
Effects of three levels of photosynthetic photon flux (PPF: 60, 160 and 300 μmol m−2s−1) were investigated in one-month-old Phalaenopsis plantlets acclimatised ex vitro. Optimal growth, chlorophyll and carotenoid concentations, and a high carotenoid:chlorophyll a ratio were obtained at 160 μmol m−2s−1, while net CO2 assimilation (A), stomatal conductance (g), transpiration rate (E) and leaf temperature peaked at 300 μmol m−2s−1, indicating the ability of the plants to grow ex vitro. Adverse effects of the highest PPF were reflected in loss of chlorophyll, biomass, non-protein thiol and cysteine, but increased proline. After acclimatisation, glucose-6-phosphate dehydrogenase, shikimate dehydrogenase, phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) increased, as did lignin. Peroxidases (POD), which play an important role in lignin synthesis, were induced in acclimatised plants. Polyphenol oxidase (PPO) and β-glucosidase (β-GS) activities increased to a maximum in acclimatised plants at 300 μmol m−2s−1. A positive correlation between PAL, CAD activity and lignin concentration was observed, especially at 160 and 300 μmol m−2s−1. The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress. A PPF of 160 μmol m−2s−1was suitable for acclimatisation when plants were transferred from in vitro conditions.  相似文献   

7.
Aims: A microbiological bioassay using Geoacillus stearothermophilus was optimized to detect betalactams at concentrations near to the Maximum Residue Limits (MRLs), with low cross‐specificity for tetracycline. Methods and Results: A factorial design (3 × 4) was used to evaluate the effects of concentration of spores (2·0 × 106, 4·0 × 106 and 8·0 × 106 spores ml?1) and incubation time (3·0, 3·5, 4·0 and 4·5 h) on the response of the bioassay. Then, desirability function to raise the detection capabilities (CCβ) of tetracyclines and increase sensitivity to betalactams was implemented. Significant effects of Log[S] and incubation time [It] on the CCβ of betalactams and tetracyclines were observed. Finally, high value of global desirability (D = 0·853), adequate betalactams CCβ (3·8 μg l?1 of penicillin ‘G’, 27 μg l?1 of oxacillin, 8·1 μg l?1 of ampicillin, 48 μg l?1 of cloxacillin) and high tetracyclines CCβ (5260 μg l?1 chlortetracycline, 1550 μg l?1 of oxytetracycline, 1070 μg l?1 of tetracycline) were calculated. Conclusions: The application of chemometric tools allows the optimization of a bioassay that detects betalactam residues in milk. The more robust conditions have been achieved in Log[S] = 6·30 and [It] = 4·20 h. Significance and Impact of the Study: The logistic regression model and the desirability function are adequate chemometric techniques to improve the properties of the methods, because it is possible to increase sensitivity and decrease cross‐specificity simultaneously.  相似文献   

8.
Environmental relevant concentrations of glyphosate‐based herbicide as 50 µg l?1, 300 µg l?1 and 1800 µg l?1 can affect sperm quality of yellowtail tetra fish Astyanax lacustris . Viability of sperm cells was impaired at 300 µg l?1, a concentration that is within legal limits in U.S.A. waterbodies, while motility was impaired at 50 µg l?1, which is the more stringent limit set in Brazilian law. Therefore, environment protection agencies must review regulations of glyphosate‐based herbicides on water bodies.  相似文献   

9.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

10.
We investigated the pharmacological actions of a slow-releasing H2S donor, GYY 4137; a substrate for the biosynthesis of H2S, l-cysteine and its precursor, N-acetylcysteine on potassium (K+; 50 mM)-evoked [3H]D-aspartate release from bovine isolated retinae using the Superfusion Method. GYY 4137 (10 nM–10 µM), l-cysteine (100 nM–10 µM) and N-acetylcysteine (10 µM–1 mM) elicited a concentration-dependent decrease in K+-evoked [3H]D-aspartate release from isolated bovine retinae without affecting basal tritium efflux. At equimolar concentration of 10 µM, the rank order of activity was as follows: l-cysteine?>?GYY 4137?>?N-acetylcysteine. A dual inhibitor of the biosynthetic enzymes for H2S, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOA; 3 mM) reversed the inhibitory responses caused by GYY 4137, l-cysteine and N-acetylcysteine on K+-evoked [3H]D-aspartate release. Glibenclamide (300 µM), an inhibitor of KATP channels blocked the inhibitory action of GYY 4137 and l-cysteine but not that elicited by N-acetylcysteine on K+-induced [3H]D-aspartate release. The inhibitory effect of GYY 4137 and l-cysteine on K+-evoked [3H]D-aspartate release was reversed by the non-specific inhibitor of nitric oxide synthase (NOS), l-NAME (300 µM). Furthermore, a specific inhibitor of inducible NOS (iNOS), aminoguanidine (10 µM) blocked the inhibitory action of l-cysteine on K+-evoked [3H]D-aspartate release. We conclude that both donors and substrates for H2S production can inhibit amino acid neurotransmission in bovine isolated retinae, an effect that is dependent, at least in part, upon the intramural biosynthesis of this gas, and on the activity of KATP channels and NO synthase.  相似文献   

11.
The incidence of Candida glabrata infections has rapidly grown and this species is among those responsible for causing invasive candidiasis with a high mortality rate. The diterpene ent-hardwickiic acid is a major constituent in Copaifera pubiflora oleoresin and the ethnopharmacological uses of this oleoresin by people from Brazilian Amazonian region point to a potential use of this major constituent as an antimicrobial. Therefore, the goal of this study was to evaluate the antifungal activity of ent-hardwickiic acid against Candida species and to produce derivatives of this diterpene by using microbial models for simulating the mammalian metabolism. The microbial transformations of ent-hardwickiic acid were carried out by Aspergillus brasiliensis and Cunninghamella elegans and hydroxylated metabolites were isolated and their chemical structures were determined. The antifungal activity of ent-hardwickiic acid and its metabolites was assessed by using the microdilution broth method in 96-well microplates and compared with that of fluconazole. All the diterpenes showed fungistatic effects (ranging from 19·7 to 75·2 µmol l−1) against C. glabrata at lower concentrations than fluconazole (163·2 µmol l−1) and were more potent fungicides (ranging from 39·5 to 150·4 µmol l−1) than fluconazole, which showed fungicidal effect at the concentration of 326·5 µmol l−1.  相似文献   

12.
Among marine phytoplankton groups, diatoms span the widest range of cell size, with resulting effects upon their nitrogen uptake, photosynthesis and growth responses to light. We grew two strains of marine centric diatoms differing by ~4 orders of magnitude in cell biovolume in high (enriched artificial seawater with ~500 µmol L?1 µmol L?1 NO3 ?) and lower-nitrogen (enriched artificial seawater with <10 µmol L?1 NO3 ?) media, across a range of growth light levels. Nitrogen and total protein per cell decreased with increasing growth light in both species when grown under the lower-nitrogen media. Cells growing under lower-nitrogen media increased their cellular allocation to RUBISCO and their rate of electron transport away from PSII, for the smaller diatom under low growth light and for the larger diatom across the range of growth lights. The smaller coastal diatom Thalassiosira pseudonana is able to exploit high nitrogen in growth media by up-regulating growth rate, but the same high-nitrogen growth media inhibits growth of the larger diatom species.  相似文献   

13.
Petioles of water‐sufficient intact Vicia faba L. plants were infused with 1 µm abscisic acid (ABA) to simulate the import of root‐source ABA. This protocol permitted quantitative ABA delivery, up to 300 pmol ABA over 60 min, to the leaf without ambiguities associated with perturbations in plant–water status. The ABA concentrations in whole‐leaf samples and in apoplastic sap increased with the amount infused; ABA degradation was not detected. The ABA concentration in apoplastic sap was consistent with uptake of imported ABA into the leaf symplast, but this interpretation is qualified. Our focus was quantitative cellular compartmentation of imported ABA in guard cells. Unlike when leaves are stressed, the guard‐cell symplast ABA content did not increase because of ABA infusion (P = 0·48; 3·0 ± 0·5 versus 4·0 ± 1·2 fg guard‐cell‐pair?1). However, the guard‐cell apoplast ABA content increased linearly (R2 = 0·98) from ?0·2 ± 0·5 to 3·1 ± 1·3 fg guard‐cell‐pair?1 (≈ 3·1 µm ) and was inversely related to leaf conductance (R2 = 0·82). Apparently, xylem ABA accumulates in the guard‐cell wall as a result of evaporation of the apoplast solution. This mechanism provides for integrating transpiration rate and ABA concentration in the xylem solution.  相似文献   

14.
This study assessed the histological changes in the epidermis of guppies Poecilia reticulata induced by waterborne zinc (Zn). Laboratory‐reared P. reticulata fry were maintained individually in separate vessels containing artificial water (8 µg l?1 Zn) to which 0, 15, 30, 60 or 120 µg l?1 Zn was added. Their epidermal response to Zn was monitored regularly over 4 weeks. Compared with controls, mucus was rapidly released and mucous cell numbers decreased at all concentrations. Thereafter mucous release, epidermal thickness, numbers and size of mucous cells fluctuated at a rate that varied with Zn concentration, but fluctuations declined after day 18. Results clearly highlight the dynamic nature of the epidermal response to sublethal concentrations of waterborne Zn. In general, low concentrations of Zn induced a rapid response with reduced numbers and size of mucous cells and shift in mucin composition, and a subsequent thickening of the epidermis. Epidermal thickness and mucous cell area fluctuated over time but were normal after a month of exposure to low Zn concentrations. The number of mucous cells, however, remained low. Virtually all mucous cells from fish maintained in 15 and 60 µg l?1 Zn contained acidic mucins throughout the month, whereas fish maintained at 30 µg l?1 Zn responded by production of neutral mucins during the first 12 days followed by a mixture of neutral and acidic mucins. At 120 µg l?1 Zn, the most dramatic effects were the gradual but sustained decrease in numbers and area of mucous cells, and the shift to acidic mucins in these cells. Thus, as concentration of Zn increased, the epidermal responses indicated a disturbed host response (dramatic decline in mucous cell numbers, with mixed composition of mucins), which may have been less effective in preventing Zn uptake across the epithelium.  相似文献   

15.
Aim: To maximize biomass production of an ochratoxigenic mould–controlling strain of Lachancea thermotolerans employing response surface methodology (RSM). Methods and Results: Using Plackett–Burman screening designs (PBSD) and central composite designs (CCD), an optimized culture medium containing (g l?1): fermentable sugars (FS), 139·2, provided by sugar cane molasses (CMz), (NH4)2HPO4 (DAP), 9·0, and yeast extract (YE), 2·5, was formulated. Maximal cell concentration obtained after 24 h at 28°C was 24·2 g l?1cell dry weight (CDW). The mathematical model obtained was validated in experiments performed in shaken‐flask cultures and also in aerated bioreactors. Maximum yield and productivity values achieved were, respectively, of 0·23 g CDW/g FS in a medium containing (g l?1): FS, 87·0; DAP, 7·0; YE, 1·0; and of 0·96 g CDW l?1 h?1 in a medium containing (g l?1): FS, 150·8 plus DAP, 6·9. Conclusions: Optimized culture conditions for maximizing yeast biomass production determined in flask cultures were applicable at a larger scale. The highest yield values were attained in media containing relatively low‐CMz concentrations supplemented with DAP and YE. Yeast extract would not be necessary if higher productivity is the aim. Significance and Impact of the Study: Cells of L. thermotolerans produced aerobically could be sustainably produced in a medium just containing cheap carbon, nitrogen and phosphorus sources. Response surface methodology allowed the fine‐tuning of cultural conditions.  相似文献   

16.
The Ria Formosa is a meso-tidal coastal lagoon experiencing enhanced nutrient concentrations. Assessment of sediment–seawater interaction is essential if nutrient dynamics and the risk of eutrophication are to be fully understood. Pore water concentrations of dissolved inorganic and organic phosphorus, ammonium, nitrate and nitrite were determined in cores from six sites. Changes in nutrients concentrations were measured in intertidal pools on sand and mud between tides. Dissolved inorganic phosphorus (DIP) concentrations (~200 μmol l−1) and effluxes (123 ± 14 μmol m−2 h−1) were greater from sand than mud (37 ± 10 μmol m−2 h−1), possibly due to the binding of P with the <63 μm fraction. NH4+ effluxes were high outside the Anc?o Basin (821 ± 106 μmol m−2 h−1) and were associated with Enteromorpha sp. mats. The greatest NO3 efflux was from sediments near a salt marsh (170 ± 67 μmol m−2 h−1). These sediment fluxes of P were not sufficient to account for elevated P concentrations seen by other workers on the ebb tide from the Anc?o Basin. Intertidal pools were sinks for Dissolved Inorganic Nitrogen (DIN) and DIP over the 6 h exposure period. Thus, tidepools may be an important route of nutrients into sediments that enhances the effects of sediments on seawater nutrient concentrations.  相似文献   

17.
Aims: The purpose of this study was to determine the proficiency of supplements to enhance the recovery of Salmonella from heat‐treated liquid egg albumen on solid agar media. Methods and Results: Salmonella‐inoculated albumen, heated at 53·3°C for 4 min, was plated on 39 combinations of solid media with or without the addition of 12 supplements. Greater numbers of Salmonella (P < 0·05) recovered with the addition of 1·0 g l?1 ferrous sulfate (FeSO4) than with any other supplements, except for 0·5 or 1·0 g l?1 3′3′‐thiodipropionic acid (TDP), which recovered equivalent populations. Addition of 1·0 g l?1 sodium pyruvate or 6·0 g l?1 yeast extract plus 1·0 g l?1 sodium pyruvate supported greater resuscitation than unsupplemented tryptic soy agar (TSA) or supplementing with 0·01 or 0·1 g l?1 N‐propyl gallate, 10 g l?1 activated charcoal, 0·1 g l?1 KMnO4 or 50 mg l?1 ethoxyquin. The remaining supplements supported recovery of equivalent numbers of Salmonella, which were fewer cells than recovered with 1·0 g l?1 FeSO4, yet greater populations than recovered with 50 mg l?1 ethoxyquin. Conclusion: Supplementation of plating media with FeSO4, TDP or sodium pyruvate enhanced recovery of sublethally injured Salmonella from albumen. Significance and Impact of the Study: Pasteurizing albumen impedes recovery of pathogens. These results suggest that the addition of supplements to plating media may assist resuscitation and colony development of heat‐injured salmonellae.  相似文献   

18.
Selection of a cell line suitable for a hybrid artificial liver model employing cellulose porous beads (CPBs) was investigated. Hep G2 cells grown in a culture dish exhibited appreciably higher ureogenesis and gluconeogenesis activities than those grown in CPBs. SEM observation of CPBs revealed marked difference in the distribution of attached cells from one bead to another, and showed that almost all the cell-bearing micropores were completely packed with cells. With the aim of selecting a cell line not prone to excessive aggregation and which grows moderately so as not to fill up the micropores, cells of 6 cell lines, HLE, HLF, Hep 3B, PLC/PRF/5, Huh 7 and Hep G2, were cultivated in dishes. Hep G2, HLE, and HLF increased to 5 × 105 cells/cm2, whereas PLC/PRF/5 grew only to 5 × 104, and Hep 3B and Huh 7 up to 2 × 104 cells/cm2. The specific activities of ureogenesis and gluconeogenesis of Huh 7 were the highest among the lines tested - 42- and 7-fold those of Hep G2, respectively. When the 6 cell lines were grown in a submerged culture with 0.6 g/l of CPBs, Huh 7 had the lowest cell concentration of 0.54 × 106 cells/ml, and the highest activities of ammonia consumption and urea and glucose production (1.38 μ mol NH3, 99 nmol urea, and 14.5 nmol glucose/106cells/h). Consequently, Huh 7 is considered to be a suitable cell line for use in the development of an artificial liver model employing porous beads. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In Catharanthus roseus cell cultures, the monoterpenoid pathway has been shown to be a limiting factor in terpenoid indole alkaloid (TIA) production. This could be due to competition at the level of isopentenyl diphosphate::dimethylallyl diphosphate (C5) which leads to the biosynthesis of different terpenoid groups. For future engineering of the terpenoid pathway, chemical characterization of C. roseus cell cultures is a necessity. Therefore, in this study nine C. roseus cell suspension lines were characterized by analyzing the levels of the major terpenoids derived from different biosynthetic pathways which may compete for the same precursors; TIA (monoterpenoid, C10), carotenoids (tetraterpenoid, C40), and sterols (triterpenoid, C30). Among the cell lines, CRPP (S) was the most promising TIA-producing cell line which provided more TIA [24 μmol g?1 dry weight (DW)] than carotenoids (15 μmol g?1 DW) and sterols (2 μmol g?1 DW). However, when considering the distribution of the isopentenyl-precursor (C5), the carotenoids which assemble from 8× C5 represent twofold more C5-units (122 μmol g?1 DW) than the TIA in this cell line. In the CRPP (G), A12A2 (G), and A12A2 (S) cell lines, the C5 distribution was predominant toward carotenoid biosynthesis as well, resulting in a relatively high accumulation of carotenoids. The geranylgeranyl diphosphate (C20) pathway toward carotenoid production is therefore considered competitive toward TIA biosynthesis. For channeling more precursors to the TIA, the branch point for C10 and C20 seems an interesting target for metabolic engineering. Using principal component analysis of the chromatographic data, we characterized the cell lines chemically based on their metabolite levels. The information on the metabolic composition of C. roseus cell cultures is useful for developing strategies to engineer the metabolic pathways and for selection of cell lines for future studies.  相似文献   

20.
Di(2‐ethylhexyl)phthalate (DEHP) is one of the many environmental chemicals that are widely used in polyvinyl chloride products, vinyl flooring, food packaging and infant toys. They cause cell proliferation or dysfunction of human liver. The purpose of this study is to investigate the inhibitory effect of a glycoprotein (24 kDa) isolated from Zanthoxylum piperitum DC (ZPDC) on proliferation of liver cell in the DEHP‐induced BNL CL. 2 cells. [3H]‐thymidine incorporation, intracellular reactive oxygen species (ROS), intracellular Ca2+ mobilization and activity of protein kinase C (PKC) were measured using radioactivity and fluorescence method respectively. The expression of mitogen‐activated protein kinases [extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK)], activator protein (AP)‐1 (c‐Jun and c‐Fos), proliferating cell nuclear antigen (PCNA) and cell cycle‐related factors (cyclin D1/cyclin‐dependent kinase [CDK] 4) were evaluated using Western blotting or electrophoretic mobility shift assay. The results in this study showed that the levels of [3H]‐thymidine incorporation, intracellular ROS, intracellular Ca2+ mobilization and activity of PKCα were inhibited by ZPDC glycoprotein (100 µg/ml) in the DEHP‐induced BNL CL. 2 cells. Also, activities of ERK, JNK and AP‐1 were reduced by ZPDC glycoprotein (100 µg/ml). With regard to cell proliferation, activities of PCNA and cyclin D1/CDK4 were significantly suppressed at treatment with ZPDC glycoprotein (100 µg/ml) in the presence of DEHP. Taken together, these findings suggest that ZPDC glycoprotein significantly normalized activities of PCNA and cyclin D1/CDK4, which relate to cell proliferation factors. Thus, ZPDC glycoprotein appears to be one of the compounds derived from natural products that are able to inhibit cell proliferation in the phthalate‐induced BNL CL. 2 cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号