首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of wasp venom mastoparan with biomembranes   总被引:1,自引:0,他引:1  
Mastoparan-induced changes in the K+ permeability of rat peritoneal mast cells, human erythrocytes, Staphylococcus aureus and Escherichia coli were examined. Mastoparan did not efficiently increase the K+ permeability of cells except for S. aureus. The release of membrane phospholipids was also observed from S. aureus cells in the concentration range of the permeability enhancement. Mastoparan stimulated histamine release from mast cells, independently of a small efflux of K+. Mastoparan became markedly effective to E. coli cells whose outer membrane structure was chemically disrupted beforehand, showing that the peptide can enhance the permeability of the cytoplasmic membranes of both Gram-positive and -negative bacteria. In experiments using liposomes, mastoparan increased the permeability of the liposomes composed of egg phosphatidylethanolamine and egg phosphatidylglycerol, which are the lipid constituents of the cytoplasmic membrane of E. coli cells, while it showed a weak activity to the liposomes composed of egg phosphatidylcholine and cholesterol. The latter result related closely to the fact that this peptide acted weakly on erythrocytes and mast cells in which acidic lipids constitute a minor portion. Mastoparan decreased the phase transition temperature of dipalmitoylphosphatidylglycerol liposomes, but it did not affect that of dipalmitoylphosphatidylcholine liposomes. These results indicate that mastoparan penetrated into membranes mainly containing acidic phospholipids and disrupted the membrane structure to increase the permeability. The action of the wasp venom mastoparan was compared with that of a bee venom melittin.  相似文献   

2.
Wasp venom is a complex mixture of biologically active components, including high molecular weight proteins, small peptides, bioactive amines, and amino acids. Peptides comprise up to 70% of dried venom. In social wasp venoms, three of the major peptide types are mastoparans, which cause mast cell degranulation, chemotactic peptides, which promote chemotaxis of polymorphonucleated leukocytes, and kinin‐related peptides, which are known to produce pain and increase vascular permeability. Among these, the bioactive tridecapeptide mastoparan is the most common and may even have antimicrobial activity. Herein we summarize the results of studies on vespid mastoparans, focusing on hornets (Vespa spp.) identified following a systematic literature search for mastoparans of hornets in the genus Vespa, the most active mastoparan research taxon. The common features of hornet mastoparans are C‐terminal amidation, amphipathic helical structure, and multiple functions such as mast cell degranulation and hemolysis, as well as membrane permeabilization. Most interestingly, all tested hornet mastoparans have strong antimicrobial activities, suggesting that they can provide useful insights into and opportunities for development of novel antibacterial peptides.  相似文献   

3.
Lin CH  Tzen JT  Shyu CL  Yang MJ  Tu WC 《Peptides》2011,32(10):2027-2036
Mastoparans, a family of small peptides, are isolated from the wasp venom. In this study, six mastoparans were identified in the venom of six Vespa species in Taiwan. The precursors of these mastoparans are composed of N-terminal signal sequence, prosequence, mature mastoparan, and appendix glycine at C-terminus. These mature mastoparans all have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bond. Therefore, these peptides could be predicted to adopt an amphipathic α-helical secondary structure. In fact, the CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 8 mM SDS or 40% 2,2,2-trifluoroethanol (TFE). All mastoparans exhibit mast cell degranulation activity, antimicrobial activity against both Gram-positive and -negative bacteria tested, various degree of hemolytic activity on chicken, human, and sheep erythrocytes as well as membrane permeabilization on Escherichia coli BL21. Our results also show that the hemolytic activity of mastoparans is correlated to mean hydrophobicity and mean hydrophobic moment.  相似文献   

4.
The antimicrobial peptides magainin 2 and PGLa isolated from the skin of the African clawed frog Xenopus laevis show marked functional synergism. We have proposed that the two peptides form a heterodimer composed of parallel helices with strong membrane permeabilizing activity [Hara, T., Mitani, Y., Tanaka, K., Uematsu, N., Takakura, A., Tachi, T., Kodama, H., Kondo, M., Mori, H., Otaka, A., Fujii, N., and Matsuzaki, K. (2001) Biochemistry 40, 12395-12399]. In this study, to elucidate the molecular mechanism of the synergy, we synthesized a chemically fixed heterodimer and investigated in detail the interaction of the hybrid peptide with bacteria, erythrocytes, and lipid bilayers. The hybrid peptide showed antimicrobial activity and membrane permeabilizing activity against negatively charged membranes, similar to or even stronger than those of a physical equimolar mixture of magainin and PGLa, indicating that the synergy is due to the formation of a parallel heterodimer. The heterodimer assumed a more oblique orientation than the component peptides. In contrast, the cross-linking of the two peptides significantly strengthened the action against erythrocytes and zwitterionic lipid bilayers by enhancing the affinity for membranes without changing the basic mode of action. Thus, the separate production of mutually recognizing peptides without cross-linking appears to be a good way to increase selective toxicity.  相似文献   

5.
We used K(+) and tetraphenylphosphonium (TPP(+)) electrodes simultaneously to evaluate the ability of antimicrobial peptides to form channels (or more generally to increase permeability) and to abolish membrane potential in bacterial cytoplasmic membranes in situ. Such evaluations are usually made independently by colorimetric monitoring of the hydrolysis of a chromogenic substrate by a cytoplasmic enzyme or by fluorimetric determination of membrane depolarization using a membrane potential-sensitive dye. In the present study, the K(+) electrode was used to evaluate channel-forming ability by monitoring the efflux of K(+) originally present in the cytoplasm of bacteria, while the TPP(+) electrode was used to examine membrane depolarization causing the efflux of TPP(+) accumulated in the cytoplasm of bacteria dependent on membrane potential. Thus, the combination of these two electrodes enabled us to clarify how the peptide-induced formation of ion channels is involved in disrupting the energy-generating system in situ.  相似文献   

6.
The effect of mastoparan, Ile-Asn-Leu-Lys-Ala-Leu-Ala-Ala-Leu-Ala-Lys-Lys-Ile-LeuNH2, and related peptides on the release of arachidonic acid from egg yolk lecithin liposomes, rat peritoneal mast cells, and cultured human fibroblasts was studied. In unsonicated liposomes, labeled with 1-stearoyl-2[1-14C]arachidonyl-sn-glycero-3-phosphocholine, 5 X 10(-5) M mastoparan caused a 12-, 15-, and 50-fold increase in the production of arachidonic acid catalyzed by phospholipase A2 from bee venom, eastern diamondback rattlesnake and porcine pancreas, respectively. The stimulant effect of mastoparan and related peptides was dose-dependent and further enhanced by sonication of liposomes. In contrast, melittin, while stimulating the production of arachidonic acid by phospholipase from bee venom, was inactive with the rattlesnake and pancreatic enzymes. Melittin was also only weakly active with liposomes containing stearic acid in place of arachidonic acid. Like melittin, mastoparans stimulated phospholipase activity in tissue homogenates and caused a dose-dependent release of arachidonic acid from rat peritoneal mast cells and cultured human fibroblasts prelabeled with [14C]arachidonic acid. The heptapeptide fragments mastoparan 1-7 and mastoparan 8-14, and succinylated mastoparan were ineffective. The results suggest that mastoparan and related peptides in insect venoms act, at least in part, by stimulating phospholipase activity.  相似文献   

7.
Interactions of cationic antimicrobial peptides with living bacterial and mammalian cells are little understood, although model membranes have been used extensively to elucidate how peptides permeabilize membranes. In this study, the interaction of F5W-magainin 2 (GIGKWLHSAKKFGKAFVGEIMNS), an equipotent analogue of magainin 2 isolated from the African clawed frog Xenopus laevis, with unfixed Bacillus megaterium and Chinese hamster ovary (CHO)-K1 cells was investigated, using confocal laser scanning microscopy. A small amount of tetramethylrhodamine-labeled F5W-magainin 2 was incorporated into the unlabeled peptide for imaging. The influx of fluorescent markers of various sizes into the cytosol revealed that magainin 2 permeabilized bacterial and mammalian membranes in significantly different ways. The peptide formed pores with a diameter of ∼2.8 nm (< 6.6 nm) in B. megaterium, and translocated into the cytosol. In contrast, the peptide significantly perturbed the membrane of CHO-K1 cells, permitting the entry of a large molecule (diameter, >23 nm) into the cytosol, accompanied by membrane budding and lipid flip-flop, mainly accumulating in mitochondria and nuclei. Adenosine triphosphate and negatively charged glycosaminoglycans were little involved in the magainin-induced permeabilization of membranes in CHO-K1 cells. Furthermore, the susceptibility of CHO-K1 cells to magainin was found to be similar to that of erythrocytes. Thus, the distinct membrane-permeabilizing processes of magainin 2 in bacterial and mammalian cells were, to the best of our knowledge, visualized and characterized in detail for the first time.  相似文献   

8.
Chen W  Yang X  Yang X  Zhai L  Lu Z  Liu J  Yu H 《Peptides》2008,29(11):1887-1892
Hornets possess highly toxic venoms, which are rich in toxins, enzymes and biologically active peptides. Many bioactive substances have been identified from wasp venoms. Vespa mastoparan (MP-VBs) and Vespa chemotatic peptide presenting antimicrobial action (VESP-VBs) were purified and characterized from the venom of the wasp, Vespa bicolor Fabricius. The precursors encoding VESP-VBs and MP-VBs were cloned from the cDNA library of the venomous glands. Analyzed by FAB-MS, the amino acid sequence and molecular mass for VESP-VB1 were FMPIIGRLMSGSL and 1420.6, for MP-VB1 were INMKASAAVAKKLL and 1456.5, respectively. The primary structures of these peptides are homologous to those of chemotactic peptides and mastoparans isolated from other vespid venoms. These peptides showed strong antimicrobial activities against bacteria and fungi and induced mast cell degranulation, but displayed almost no hemolytic activity towards human blood red cells.  相似文献   

9.
The magainins are basic 23 amino acid peptides with a broad spectrum of antimicrobial activity. Their bactericidal effect has been attributed to their capacity to interact with lipid bilayer membranes. We observed histamine release by magainin-2 amide from rat peritoneal mast cells (ED50 = 13 micrograms/ml) but not from human basophils. This histamine-releasing reaction from peritoneal mast cells was due to a secretory rather than cytolytic effect, i.e., release occurred without concomitant liberation of lactic dehydrogenase. Furthermore, the pretreatment of mast cells with magainin-2 amide did not desensitize cells against subsequent challenge with other secretagogues. Maximum histamine release occurred in less than a minute at 25 and 37 degrees C. The addition of Ca2+ was not required for histamine release, although release was enhanced by the addition of 0.3-1 mM Ca2+. The addition of 3 mM Ca2+ or Mg2+ was markedly inhibitory. The presence of Na+ or Cl- ions in the medium was not required for release. Therefore, histamine release is not due to the formation of anion-selective channels in the membrane of mast cells. The results indicated that the characteristics of histamine secretion induced by magainin-2 amide were unlike IgE-mediated release but were similar to the mechanism of release attributed to some other basic peptides and to compound 48/80.  相似文献   

10.
The conformational properties of the magainin family of antimicrobial peptides in aqueous solution and in model membranes have been probed by Fourier transform infrared spectroscopy. The magainins were found to be structureless in aqueous solution at neutral pD, confirming other studies by Raman and circular dichroism spectroscopy. Increasing the pD to 10 induced the formation of predominantly alpha-helical secondary structures, with some beta-sheet. In the presence of negatively charged liposomes (dimyristoylphosphatidylglycerol), the peptides folded into alpha-helical secondary structures with some beta-sheet structure evident. On the other hand, in the presence of zwitterionic phospholipids (dimyristoylphosphatidylcholine), the spectra were identical to those in aqueous solution. For some magainins, the interaction with charged liposomes was modulated by the presence of cholesterol; cholesterol was found to promote the formation of beta-sheet structures, as evidenced by the appearance of amide I bands at 1614 and 1637 cm-1. Differences in structure were observed between the amidated and nonamidated forms of some peptides. From the data, a mechanism of antimicrobial action of the magainin family of peptides is proposed.  相似文献   

11.
To develop novel Pro-rich model AMPs with shorter length and higher bacterial selectivity/therapeutic index (TI) than natural AMP, indolicidin, we synthesized a series of undodecapeptides derived from the sequence XXPXXPWXPXX-NH2 (X indicates Leu or Lys) with different ratios of Lys and Leu residues. Several Pro-rich model peptides (K7 WP3, K6 WL1 P3, K5 WL2 P3-1, K5 WL2 P3-2, and K4 WL3 P3) had approximate 8- to 11-fold higher bacterial selectivity/TI compared to indolicidin. These peptides selectively bind to negatively charged liposomes (EYPG/EYPG; 7:3, w/w) mimicking bacterial membranes. Their high selectivity to negatively charged phospholipids corresponds well with their high bacterial selectivity. Indolicidin showed almost complete depolarization of the cytoplasmic membrane of Staphylococcus aureus and dye-leakage from negatively charged liposomes at 10 microM, whereas all of Pro-rich model peptides had very little activity in these assays even at 80 microM, as observed in buforin 2. These results suggest that the ultimate target of our designed Pro-rich model peptides is probably the intracellular components (e.g. protein, DNA or RNA) rather than the cytoplasmic membranes. Collectively, our designed Pro-rich short model peptides appear to be excellent candidates for future development as a novel antimicrobial agent.  相似文献   

12.
It is well known that the activation of mast cells due to the binding of mastoparan to the G(α) subunit of trimeric G proteins involves exocytosis regulation. However, experimental evidence in the literature indicates that mastoparan can also activate certain regulatory targets of exocytosis at the level of the mast cell endosomal membranes that have not yet been identified. Therefore, the aim of the present investigation was the proteomic identification of these targets. To achieve these objectives, mast cells were activated by the peptide Protopolybia MP-III, and the proteins of the endosomal membranes were converted to proteoliposomes using sonication. Proteins were separated from one another by affinity chromatography using proteoliposomes as analytes and Protopolybia MP III-immobilized Sepharose 4B resin as the ligand. This experimental approach, which used SDS-PAGE, in-gel trypsin digestion and proteomic analysis, permitted the identification of five endosomal proteins: Rho GTPase Cdc 42 and exocyst complex component 7 as components of the Ca(2+) -independent FcεRI-mediated exocytosis pathway, synaptosomal-associated protein 29, and GTP-binding protein Rab3D as components of the Ca(2+) -dependent FcεRI-mediated exocytosis pathway and Ras-related protein M-Ras, a protein that is related to the mediation of cell shaping and proliferation following exocytosis. The identification of the five proteins as targets of mastoparans may contribute in the near future to the use of this family of peptides as novel tools for dissecting the mechanism of exocytosis in mast cells.  相似文献   

13.
Mechanisms of cell death induced by toxins probably involve one or more processes such as inhibition of protein synthesis and impairment of plasma membrane integrity leading to an increase in membrane permeability. Since one of the possible actions of mastoparan, a cationic tetradecapeptide from wasp venom, is to perturb membrane phospholipids resulting in an increase in membrane permeability, we studied the effect of chemically synthesized mastoparan on lactate dehydrogenase release (LDH), ethidium bromide and fluorescein accumulation in Madin-Darby Canine Kidney (MDCK) cultured cells. Our results demonstrated that mastoparan induced cytosolic LDH release, ethidium bromide accumulation and intracellular fluorescein depletion in MDCK cells. Neomycin, a polycationic aminoglycoside, interacts with anionic polyphosphoinositides at the plasma membrane. Since both mastoparan and neomycin are cationic peptides and react with the negatively charged membrane phospholipids, we studied the interaction of these two peptides on membrane permeability. Our results demonstrated that neomycin inhibited mastoparan-induced LDH release, ethidium bromide accumulation and intracellular fluorescein depletion.Abbreviations LDH Lactate Dehydrogenase - MDCK Madin Darby Canine Kidney  相似文献   

14.
Cytotoxicity, a major obstacle in therapeutic application of antimicrobial peptides, is controlled by leucine-zipper-like sequences in melittin and other naturally occurring antimicrobial peptides. Magainin 2 shows significantly lower cytotoxicity than many naturally occurring antimicrobial peptides and lacks this structural element. To investigate the consequences of introducing a leucine zipper sequence in magainin 2, a novel analogue (Mag-mut) was designed by rearranging only the positions of its hydrophobic amino acids to include this structural element. Both magainin 2 and Mag-mut showed appreciable similarities in their secondary structures in the presence of negatively charged lipid vesicles, in localizing and permeabilizing the selected bacteria and exhibiting bactericidal activities. However, Mag-mut bound and localized strongly on to the mammalian cells tested and exhibited significantly higher cytotoxicity than magainin 2. Only Mag-mut, but not magainin 2, permeabilized human red blood cells and zwitterionic lipid vesicles. In contrast with magainin 2, Mag-mut self-assembled in an aqueous environment and bound co-operatively on to zwitterionic lipid vesicles. The peptides formed pores of different sizes on to a selected mammalian cell. The results of the present study indicate an important role of the leucine zipper sequence in the cytotoxicity of Mag-mut and demonstrate that its introduction into a non-toxic peptide, without altering the amino acid composition, can render cytotoxicity.  相似文献   

15.
Unger T  Oren Z  Shai Y 《Biochemistry》2001,40(21):6388-6397
The amphipathic alpha-helical structure is a common motif found in membrane binding polypeptides including cell lytic peptides, antimicrobial peptides, hormones, and signal sequences. Numerous studies have been undertaken to understand the driving forces for partitioning of amphipathic alpha-helical peptides into membranes, many of them based on the antimicrobial peptide magainin 2 and the non-cell-selective cytolytic peptide melittin, as paradigms. These studies emphasized the role of linearity in their mode of action. Here we synthesized and compared the structure, biological function, and interaction with model membranes of linear and cyclic analogues of these peptides. Cyclization altered the binding of melittin and magainin analogues to phospholipid membranes. However, at similar bound peptide:lipid molar ratios, both linear and cyclic analogues preserved their high potency to permeate membranes. Furthermore, the cyclic analogues preserved approximately 75% of the helical structure of the linear peptides when bound to membranes. Biological activity studies revealed that the cyclic melittin analogue had increased antibacterial activity but decreased hemolytic activity, whereas the cyclic magainin 2 analogue had a marked decrease in both antibacterial and hemolytic activities. The results indicate that the linearity of the peptides is not essential for the disruption of the target phospholipid membrane, but rather provides the means to reach it. In addition, interfering with the coil-helix transition by cyclization, while maintaining the same sequence of hydrophobic and positively charged amino acids, allows a separated evaluation of the hydrophobic and electrostatic contributions to binding of peptides to membranes.  相似文献   

16.
Catestatin (bovine CgA(344-364)) is a cationic peptide, which besides reducing catecholamine secretion from chromaffin cells in vitro also acts a potent vasodilator in the rat in vivo. The alleged histamine releasing effect of catestatin was tested in vitro in rat mast cells. The most active domain of catestatin (bovine CgA(344-358): RSMRLSFRARGYGFR) caused concentration-dependent (0.01-5 microM) release of histamine from peritoneal and pleural mast cells. The potency and efficacy of catestatin was higher than for the wasp venom peptide, mastoparan. Only in the pleural cells was neurotensin (NT) more potent than catestatin, mastoparan and substance P (SP), consistent with a receptor-mediated histamine release by neurotensin. Amongst these cationic peptides, substance P was least effective. The acidic CgA peptide (WE-14, bovine CgA (324-337)) neither stimulated nor modulated histamine release by the cationic peptides. The catestatin and neurotensin evoked histamine release were suppressed by pertussis toxin (PTX), suggesting involvement of a G(i) subunit. Electron micrographs of rat pleural mast cells responding to catestatin revealed a concentration-dependent discharge of granular material. We propose that catestatin activates histamine release from rat mast cells by a mechanism analogous to that already established for mastoparan and other amphiphilic cationic neuropeptides (the peptidergic pathway) and distinct from the mechanism of inhibition of catecholamine release from chromaffin cells.  相似文献   

17.
Five structurally related heptadecapeptides rich in hydrophobic amino acids have been discovered in the venom of the bumblebee Megabombus pennsylvanicus. We have named them bombolitin I (Ile-Lys-Ile-Thr-Thr-Met-Leu-Ala-Lys-Leu-Gly-Lys-Val-Leu-Ala-His-Val-NH2 ), bombolitin II (Ser-Lys-Ile-Thr-Asp-Ile-Leu-Ala-Lys-Leu-Gly-Lys-Val-Leu-Ala-His-Val-NH2 ), bombolitin III (Ile-Lys-Ile-Met-Asp-Ile-Leu-Ala-Lys-Leu-Gly-Lys-Val-Leu-Ala-His-Val-NH2 ), bombolitin IV (Ile-Asn-Ile-Lys-Asp-Ile-Leu-Ala-Lys-Leu-Val-Lys-Val-Leu-Gly-His-Val-NH2 ), and bombolitin V (Ile-Asn-Val-Leu-Gly-Ile-Leu-Gly-Leu-Leu-Gly-Lys-Ala-Leu-Ser-His-Leu-NH2 ). Bombolitins are structurally and functionally very similar. They lyse erythrocytes and liposomes, release histamine from rat peritoneal mast cells, and stimulate phospholipase A2 from different sources. The threshold dose is 0.5-2.5 micrograms/ml depending on the peptide and the bioassay. Bombolitin V is as potent as the well-known melittin in lysing guinea pig erythrocytes (ED50 = 0.7 microgram/ml = 4 X 10(-7) M) and is 5 times more potent than mastoparan in causing mast cell degranulation, making it one of the most potent degranulating peptides discovered so far (ED50 = 2 micrograms/ml = 1.2 X 10(-6) M). The bombolitins represent a unique structural class of peptides but they have the same biological properties as melittin (from honeybees), mastoparan (wasps, hornets, and yellow jackets), and crabrolin (European hornets). This unusual circumstance (peptides with different amino acid sequences having the same biological properties) may be a manifestion of their amphiphilic nature, a property these peptides have in common.  相似文献   

18.
T Wieprecht  M Beyermann  J Seelig 《Biochemistry》1999,38(32):10377-10387
Magainins are positively charged amphiphatic peptides which permeabilize cell membranes and display antimicrobial activity. They are usually thought to bind specifically to anionic lipids, and binding studies have been performed almost exclusively with negatively charged membranes. Here we demonstrate that binding of magainins to neutral membranes, a reaction which is difficult to assess with spectroscopic means, can be followed with high accuracy using isothermal titration calorimetry. The binding mechanism can be described by a surface partition equilibrium after correcting for electrostatic repulsion by means of the Gouy-Chapman theory. Unusual thermodynamic parameters are observed for the binding process. (i) The three magainin analogues that were investigated bind to neutral membranes with large exothermic reaction enthalpies DeltaH of -15 to -18 kcal/mol (at 30 degrees C). (ii) The reaction enthalpies increase with increasing temperature, leading to a large positive heat capacity DeltaC(p) of approximately 130 cal mol(-)(1) K(-)(1) (at 25 degrees C). (iii) The Gibbs free energies of binding DeltaG are between -6.4 and -8.6 kcal/mol, resulting in a large negative binding entropy DeltaS. The binding of magainin to small unilamellar vesicles is hence an enthalpy-driven reaction. The negative DeltaH and DeltaS and the large positive DeltaC(p) contradict the conventional understanding of the hydrophobic effect. CD experiments reveal that the membrane-bound fraction of magainin is approximately 80% helical at 8 degrees C, decreasing to approximately 60% at 45 degrees C. Since the random coil --> alpha-helix transition in aqueous solution is known to be an exothermic process, the same process occurring at the membrane surface is shown to account for up to 65% of the measured reaction enthalpy. In addition to membrane-facilitated helix formation, the second main driving force for membrane binding is the insertion of the nonpolar amino acid side chains into the lipid bilayer. It also contributes a negative DeltaH and follows the pattern for the nonclassical hydrophobic effect. Addition of cholesterol drastically reduces the extent of peptide binding and reveals an enthalpy-entropy compensation mechanism. Membrane permeability was measured with a dye assay and correlated with the extent of peptide binding. The level of dye efflux is linearly related to the amount of surface-bound peptide and can be traced back to a membrane perturbation effect.  相似文献   

19.
Magainin and PGLa are 23- and 21-residue peptides isolated from the skin of the African clawed frog Xenopus laevis. They protect the frog from infection and exhibit a broad-spectrum antimicrobial activity in vitro. The mechanism of this activity involves the interaction of magainin with microbial membranes. We have measured the secondary structure and membrane-perturbing ability of these peptides to obtain information about this mechanism. Our results show that mgn2a forms a helix with an average length of less than 20 A upon binding to liposomes. At high concentrations (50 mg/mL) mgn2a spontaneously solubilizes phosphatidylcholine liposomes at temperatures above the gel-liquid-crystalline phase transition. Mgn2a appears to bind to the surface of liposomes made of negatively charged lipids without spontaneously penetrating the bilayer. Finally, mgn2a and PGLa interact together with liposomes in a synergistic way that enhances the helix content of one or both of the peptides and allows the peptides to more easily penetrate the bilayer. PGLa mixed with a small nonperturbing amount of magainin 2 amide is 25-43 times as potent as PGLa alone at inducing the release of carboxyfluorescein from liposomes. The results suggest that the mechanism of antimicrobial activity does not involve a channel formed by transmembrane helical peptides.  相似文献   

20.
Mastoparan is an α-helical and amphipathic tetradecapeptide obtained from the venom of the wasp Vespula lewisii. This peptide exhibits a wide variety of biological effects, including antimicrobial activity, increased histamine release from mast cells, induction of a potent mitochondrial permeability transition and tumor cell cytotoxicity. Here, the effects of mastoparan in malignant melanoma were studied using the murine model of B16F10-Nex2 cells. In vitro, mastoparan caused melanoma cell death by the mitochondrial apoptosis pathway, as evidenced by the Annexin V-FITC/PI assay, loss of mitochondrial membrane potential (ΔΨm), generation of reactive oxygen species, DNA degradation and cell death signaling. Most importantly, mastoparan reduced the growth of subcutaneous melanoma in syngeneic mice and increased their survival. The present results show that mastoparan induced caspase-dependent apoptosis in melanoma cells through the intrinsic mitochondrial pathway protecting the mice against tumor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号