首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Intracellular proteinaceous aggregates are hallmarks of many common neurodegenerative disorders, and recent studies have shown that alpha-synuclein is a major component of several pathological intracellular inclusions, including Lewy bodies in Parkinson's disease (PD) and glial cell inclusions in multiple system atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into filamentous inclusions remain unknown. Since oxidative and nitrative stresses are potential pathogenic mediators of PD and other neurodegenerative diseases, we asked if oxidative and/or nitrative events alter alpha-synuclein and induce it to aggregate. Here we show that exposure of human recombinant alpha-synuclein to nitrating agents (peroxynitrite/CO(2) or myeloperoxidase/H(2)O(2)/nitrite) induces formation of nitrated alpha-synuclein oligomers that are highly stabilized due to covalent cross-linking via the oxidation of tyrosine to form o,o'-dityrosine. We also demonstrate that oxidation and nitration of pre-assembled alpha-synuclein filaments stabilize these filaments to withstand denaturing conditions and enhance formation of SDS-insoluble, heat-stable high molecular mass aggregates. Thus, these data suggest that oxidative and nitrative stresses are involved in mechanisms underlying the pathogenesis of Lewy bodies and glial cell inclusions in PD and multiple system atrophy, respectively, as well as alpha-synuclein pathologies in other synucleinopathies.  相似文献   

2.
Lewy bodies, neuropathological hallmarks of Parkinson's disease and dementia with Lewy bodies, comprise alpha-synuclein filaments and other less defined proteins. Characterization of Lewy body proteins that interact with alpha-synuclein may provide insight into the mechanism of Lewy body formation. Double immunofluorescence labeling and confocal microscopy revealed approximately 80% of cortical Lewy bodies contained microtubule-associated protein 1B (MAP-1B) that overlapped with alpha-synuclein. Lewy bodies were isolated using an immunomagnetic technique from brain tissue of patients dying with dementia with Lewy bodies. Lewy body proteins were resolved by polyacrylamide gel electrophoresis. Immunoblotting confirmed the presence of MAP-1B and alpha-synuclein in purified Lewy bodies. Direct binding studies revealed a high affinity interaction (IC(50) approximately 20 nm) between MAP-1B and alpha-synuclein. The MAP-1B-binding sites were mapped to the last 45 amino acids of the alpha-synuclein C terminus. MAP-1B also bound in vitro assembled alpha-synuclein fibrils. Thus, MAP-1B may be involved in the pathogenesis of Lewy bodies via its interaction with monomeric and fibrillar alpha-synuclein.  相似文献   

3.
alpha-Synuclein is a soluble presynaptic protein which is pathologically redistributed within intracellular lesions characteristic of several neurodegenerative diseases. Here we demonstrate that wild type and two mutant forms of alpha-synuclein linked to familial Parkinson's disease (Ala30 --> Pro and Ala53 --> Thr) self-aggregate and assemble into 10-19-nm-wide filaments with distinct morphologies under defined in vitro conditions. Immunogold labeling demonstrates that the central region of all these filaments are more robustly labeled than the N-terminal or C-terminal regions, suggesting that the latter regions are buried within the filaments. Since in vitro generated alpha-synuclein filaments resemble the major ultrastructural elements of authentic Lewy bodies that are hallmark lesions of Parkinson's disease, we propose that self-aggregating alpha-synuclein is the major subunit protein of these filamentous lesions.  相似文献   

4.
Ubiquitination of alpha-synuclein   总被引:2,自引:0,他引:2  
Filamentous alpha-synuclein depositions are the defining hallmarks of a subset of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. We previously reported that alpha-synuclein in those brains are extensively phosphorylated at Ser129 [Fujiwara et al. (2002) Nat. Cell Biol. 4, 160-164] and also partially ubiquitinated [Hasegawa et al. (2002) J. Biol. Chem. 277, 49071-49076]. Here, we investigate ubiquitination of alpha-synuclein in vitro and in vivo and report the ubiquitination sites and the effects of familial PD-linked mutations, phosphorylation, and fibril formation on ubiquitination. Protein-sequence analysis revealed that Lys21, Lys23, Lys32, and Lys34 within the repeats in the amino-terminal half are liable to ubiquitination in vitro. A site-directed mutagensis study confirmed that these are the major ubiquitination sites. A53T and A30P mutations had no significant effect on ubiquitination. Similarly, phosphorylation of alpha-synuclein at Ser129 did not affect ubiquitination. Notably, we show that assembled, filamentous alpha-synuclein is less ubiquitinated than the soluble form and that the major ubiquitination sites are localized to Lys6, Lys10, and Lys12 at the amino-terminal region of filamentous alpha-synuclein. Furthermore, we successfully detected ubiquitination of alpha-synuclein in 293T cells by cotransfection with alpha-synuclein and ubiquitin. The in vivo ubiquitination sites were found to be identical to those in filamentous alpha-synuclein. PD-linked mutations and phosphorylation at Ser129 had no effects on ubiquitination of alpha-synuclein in vivo. These data may have implications for the mechanisms of the formation of alpha-synuclein deposits in alpha-synucleinopathy brains.  相似文献   

5.
Immunohistochemical studies have shown that oligodendroglial inclusions in multiple system atrophy contain alpha-synuclein, a synaptic protein also found in Lewy bodies in Parkinson's disease. We have now used density gradient enrichment and an anti-alpha-synuclein immunomagnetic technique to isolate pure and morphologically intact oligodendroglial inclusions from brain white matter of patients dying with multiple system atrophy. Filamentous inclusion structures were obtained only from multiple system atrophy tissue, but not from normal brain tissues, or from multiple system atrophy tissue processed without anti-alpha-synuclein antibody. We confirmed the purity and morphology of isolated inclusions by electron microscopy. The inclusions comprised multiple protein bands after separation by polyacrylamide gel electrophoresis. Immunoblotting demonstrated that these proteins included alpha-synuclein, alphaB-crystallin, tubulins, ubiquitin, and prominent, possibly truncated alpha-synuclein species as high-molecular-weight aggregates. Our study provides the first biochemical evidence that oligodendroglial inclusion filaments consist of multiple protein components, suggesting that these inclusions may form as a result of multiprotein interactions with alpha-synuclein.  相似文献   

6.
In humans, three genes encode the related alpha-, beta-, and gamma-synucleins, which function as lipid-binding proteins in vitro. They are being widely studied, mainly because of the central involvement of alpha-synuclein in a number of neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In these diseases, the normally soluble alpha-synuclein assembles into abnormal filaments. Here, we have identified and characterized the synuclein gene family from the pufferfish Fugu rubripes. It consists of four genes, which encode alpha-, beta-, gamma1-, and gamma2-synucleins. They range from 113 to 127 amino acids in length and share many of the characteristics of human synucleins, including the presence of imperfect amino-terminal repeats of 11 amino acids, a hydrophobic middle region, and a negatively charged carboxy-terminus. All four synucleins are expressed in the Fugu brain. Recombinant Fugu synucleins exhibited differential liposome binding, which was strongest for alpha-synuclein, followed by beta-, gamma2-, and gamma1-synucleins. In assembly experiments, Fugu alpha-, gamma1-, and gamma2-synucleins formed filaments more readily than human alpha-synuclein. Fugu beta-synuclein, by contrast, failed to assemble in bulk. Filament assembly of synucleins was directly proportional to their degree of hydrophobicity and their tendency to form beta-sheet structure, and correlated inversely with their net charge.  相似文献   

7.
Intracellular proteinaceous aggregates (Lewy bodies and Lewy neurites) of alpha-synuclein are hallmarks of neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple systemic atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into such filamentous inclusions remain unknown. An intriguing aspect of this problem is that alpha-synuclein is a natively unfolded protein, with little or no ordered structure under physiological conditions. This raises the question of how an essentially disordered protein is transformed into highly organized fibrils. In the search for an answer to this question, we have investigated the effects of pH and temperature on the structural properties and fibrillation kinetics of human recombinant alpha-synuclein. Either a decrease in pH or an increase in temperature transformed alpha-synuclein into a partially folded conformation. The presence of this intermediate is strongly correlated with the enhanced formation of alpha-synuclein fibrils. We propose a model for the fibrillation of alpha-synuclein in which the first step is the conformational transformation of the natively unfolded protein into the aggregation-competent partially folded intermediate.  相似文献   

8.
Missense mutations (A30P and A53T) in alpha-synuclein and the overproduction of the wild-type protein cause familial forms of Parkinson's disease and dementia with Lewy bodies. Alpha-synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define these diseases at a neuropathological level. Recently, a third missense mutation (E46K) in alpha-synuclein was described in an inherited form of dementia with Lewy bodies. Here, we have investigated the functional effects of this novel mutation on phospholipid binding and filament assembly of alpha-synuclein. When compared to the wild-type protein, the E46K mutation caused a significantly increased ability of alpha-synuclein to bind to negatively charged liposomes, unlike the previously described mutations. The E46K mutation increased the rate of filament assembly to the same extent as the A53T mutation. Filaments formed from E46K alpha-synuclein often had a twisted morphology with a cross-over spacing of 43 nm. The observed effects on lipid binding and filament assembly may explain the pathogenic nature of the E46K mutation in alpha-synuclein.  相似文献   

9.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major components of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD. alpha-Synuclein fibrils similar to the Lewy body filaments can be formed in vitro, and we have shown recently that both PD-linked mutations accelerate their formation. This study addresses the mechanism of alpha-synuclein aggregation: we show that (i) it is a nucleation-dependent process that can be seeded by aggregated alpha-synuclein functioning as nuclei, (ii) this fibril growth follows first-order kinetics with respect to alpha-synuclein concentration, and (iii) mutant alpha-synuclein can seed the aggregation of wild type alpha-synuclein, which leads us to predict that the Lewy bodies of familial PD patients with alpha-synuclein mutations will contain both, the mutant and the wild type protein. Finally (iv), we show that wild type and mutant forms of alpha-synuclein do not differ in their critical concentrations. These results suggest that differences in aggregation kinetics of alpha-synucleins cannot be explained by differences in solubility but are due to different nucleation rates. Consequently, alpha-synuclein nucleation may be the rate-limiting step for the formation of Lewy body alpha-synuclein fibrils in Parkinson's disease.  相似文献   

10.
Intracellular proteinaceous inclusions (Lewy bodies and Lewy neurites) of alpha-synuclein are pathological hallmarks of neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies (DLB), and multiple systemic atrophy. The molecular mechanisms underlying the aggregation of alpha-synuclein into such filamentous inclusions remain unknown, although many factors have been implicated, including interactions with lipid membranes. To model the effects of membrane fields on alpha-synuclein, we analyzed the structural and fibrillation properties of this protein in mixtures of water with simple and fluorinated alcohols. All solvents that were studied induced folding of alpha-synuclein, with the common first stage being formation of a partially folded intermediate with an enhanced propensity to fibrillate. Protein fibrillation was completely inhibited due to formation of beta-structure-enriched oligomers with high concentrations of methanol, ethanol, and propanol and moderate concentrations of trifluoroethanol (TFE), or because of the appearance of a highly alpha-helical conformation at high TFE and hexafluoro-2-propanol concentrations. At least to some extent, these conformational effects mimic those observed in the presence of phospholipid vesicles, and can explain some of the observed effects of membranes on alpha-synuclein fibrillation.  相似文献   

11.
A comprehensive, unbiased inventory of synuclein forms present in Lewy bodies from patients with dementia with Lewy bodies was carried out using two-dimensional immunoblot analysis, novel sandwich enzyme-linked immunosorbent assays with modification-specific synuclein antibodies, and mass spectroscopy. The predominant modification of alpha-synuclein in Lewy bodies is a single phosphorylation at Ser-129. In addition, there is a set of characteristic modifications that are present to a lesser extent, including ubiquitination at Lys residues 12, 21, and 23 and specific truncations at Asp-115, Asp-119, Asn-122, Tyr-133, and Asp-135. No other modifications are detectable by tandem mass spectrometry mapping, except for a ubiquitous N-terminal acetylation. Small amounts of Ser-129 phosphorylated and Asp-119-truncated alpha-synuclein are present in the soluble fraction of both normal and disease brains, suggesting that these Lewy body-associated forms are produced during normal metabolism of alpha-synuclein. In contrast, ubiquitination is only detected in Lewy bodies and is primarily present on phosphorylated synuclein; it therefore likely occurs after phosphorylated synuclein has deposited into Lewy bodies. This invariant pattern of specific phosphorylation, truncation, and ubiquitination is also present in the detergent-insoluble fraction of brain from patients with familial Parkinson's disease (synuclein A53T mutation) as well as multiple system atrophy, suggesting a common pathogenic pathway for both genetic and sporadic Lewy body diseases. These observations are most consistent with a model in which preferential accumulation of normally produced Ser-129 phosphorylated alpha-synuclein is the key event responsible for the formation of Lewy bodies in various Lewy body diseases.  相似文献   

12.
Neuronal and oligodendrocytic aggregates of fibrillar alpha-synuclein define several diseases of the nervous system. It is likely that these inclusions impair vital metabolic processes and compromise viability of affected cells. Here, we report that a 12-amino acid stretch ((71)VTGVTAVAQKTV(82)) in the middle of the hydrophobic domain of human alpha-synuclein is necessary and sufficient for its fibrillization based on the following observations: 1) human beta-synuclein is highly homologous to alpha-synuclein but lacks these 12 residues, and it does not assemble into filaments in vitro; 2) the rate of alpha-synuclein polymerization in vitro decreases after the introduction of a single charged amino acid within these 12 residues, and a deletion within this region abrogates assembly; 3) this stretch of 12 amino acids appears to form the core of alpha-synuclein filaments, because it is resistant to proteolytic digestion in alpha-synuclein filaments; and 4) synthetic peptides corresponding to this 12-amino acid stretch self-polymerize to form filaments, and these peptides promote fibrillization of full-length human alpha-synuclein in vitro. Thus, we have identified key sequence elements necessary for the assembly of human alpha-synuclein into filaments, and these elements may be exploited as targets for the design of drugs that inhibit alpha-synuclein fibrillization and might arrest disease progression.  相似文献   

13.
Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene. Besides Parkinson's disease, the filamentous inclusions of two additional neurodegenerative diseases, namely dementia with Lewy bodies and multiple system atrophy, have also been found to be made of alpha-synuclein. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The recent discovery of mutations in the tau gene in familial forms of frontotemporal dementia has provided a direct link between tau dysfunction and dementing disease. The new work has established that tauopathies and alpha-synucleinopathies account for most late-onset neurodegenerative diseases in man. The formation of intracellular filamentous inclusions might be the gain of toxic function that leads to the demise of affected brain cells.  相似文献   

14.
alpha-Synuclein forms a complex with transcription factor Elk-1   总被引:2,自引:0,他引:2  
alpha-Synuclein has been identified as a component of Lewy bodies in Parkinson's disease and diffuse Lewy body disease, and glial cytoplasmic inclusions (GCIs) in multiple system atrophy (MSA). To explore the role of alpha-synuclein in the pathogenesis, we searched for molecules interacting with alpha-synuclein and discovered that GCIs are stained by anti-Elk-1 antibody. To seek the role of Elk-1 in synucleinopathies, we cotransfected alpha-synuclein and Elk-1 to cultured cells, and found small granular structure complexes where the two molecules colocalized. Moreover, alpha-synuclein and Elk-1 were co-immunoprecipitated from the cell lysates. For formation of the complex, the presence of both ETS and B-box domains of Elk-1 was required. Although there was no evidence of direct binding between alpha-synuclein and Elk-1, we discovered that alpha-synuclein and Elk-1 both bind to ERK-2, a MAP kinase. The effect of alpha-synuclein on the MAP kinase pathway was assessed using the Pathdetect system, which showed prominent attenuation of Elk-1 phosphorylation with alpha-synuclein, and especially A53T mutant. Our results suggest that alpha-synuclein reacts with the MAP kinase pathway, which might cause dysfunction of neurons and oligodendrocytes and lead to neurodegeneration in Parkinson's disease and MSA.  相似文献   

15.
Proteasomal inhibition by alpha-synuclein filaments and oligomers   总被引:12,自引:0,他引:12  
A unifying feature of many neurodegenerative disorders is the accumulation of polyubiquitinated protein inclusions in dystrophic neurons, e.g. containing alpha-synuclein, which is suggestive of an insufficient proteasomal activity. We demonstrate that alpha-synuclein and 20 S proteasome components co-localize in Lewy bodies and show that subunits from 20 S proteasome particles, in contrast to subunits of the 19 S regulatory complex, bind efficiently to aggregated filamentous but not monomeric alpha-synuclein. Proteasome binding to insoluble alpha-synuclein filaments and soluble alpha-synuclein oligomers results in marked inhibition of its chymotrypsin-like hydrolytic activity through a non-competitive mechanism that is mimicked by model amyloid-Abeta peptide aggregates. Endogenous ligands of aggregated alpha-synuclein like heat shock protein 70 and glyceraldehyde-6-phosphate dehydrogenase bind filaments and inhibit their anti-proteasomal activity. The inhibitory effect of amyloid aggregates may thus be amenable to modulation by endogenous chaperones and possibly accessible for therapeutic intervention.  相似文献   

16.
Parkin accumulation in aggresomes due to proteasome impairment   总被引:16,自引:0,他引:16  
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and by the presence of ubiquitinated cytoplasmic inclusions known as Lewy bodies. Alpha-synuclein and Parkin are two of the proteins associated with inherited forms of PD and are found in Lewy bodies. Whereas numerous reports indicate the tendency of alpha-synuclein to aggregate both in vitro and in vivo, no information is available about similar physical properties for Parkin. Here we show that overexpression of Parkin in the presence of proteasome inhibitors leads to the formation of aggresome-like perinuclear inclusions. These eosinophilic inclusions share many characteristics with Lewy bodies, including a core and halo organization, immunoreactivity to ubiquitin, alpha-synuclein, synphilin-1, Parkin, molecular chaperones, and proteasome subunit as well as staining of some with thioflavin S. We propose that the process of Lewy body formation may be akin to that of aggresome-like structures. The tendency of wild-type Parkin to aggregate and form inclusions may have implications for the pathogenesis of sporadic PD.  相似文献   

17.
Aggregation of the nerve cell protein alpha-synuclein is a characteristic of the common neurodegenerative alpha-synucleinopathies like Parkinson's disease and Lewy body dementia, and it plays a direct pathogenic role as demonstrated by early onset diseases caused by mis-sense mutations and multiplication of the alpha-synuclein gene. We investigated the existence of alpha-synuclein pro-aggregatory brain proteins whose dysregulation may contribute to disease progression, and we identified the brain-specific p25alpha as a candidate that preferentially binds to alpha-synuclein in its aggregated state. Functionally, purified recombinant human p25alpha strongly stimulates the aggregation of alpha-synuclein in vitro as demonstrated by thioflavin-T fluorescence and quantitative electron microscopy. p25alpha is normally only expressed in oligodendrocytes in contrast to alpha-synuclein, which is normally only expressed in neurons. This expression pattern is changed in alpha-synucleinopathies. In multiple systems atrophy, degenerating oligodendrocytes displayed accumulation of p25alpha and dystopically expressed alpha-synuclein in the glial cytoplasmic inclusions. In Parkinson's disease and Lewy body dementia, p25alpha was detectable in the neuronal Lewy body inclusions along with alpha-synuclein. The localization in alpha-synuclein-containing inclusions was verified biochemically by immunological detection in Lewy body inclusions purified from Lewy body dementia tissue and glial cytoplasmic inclusions purified from tissue from multiple systems atrophy. We suggest that p25alpha plays a pro-aggregatory role in the common neurodegenerative disorders hall-marked by alpha-synuclein aggregates.  相似文献   

18.
alpha-Synuclein-positive cytoplasmic inclusions are a pathological hallmark of several neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Here we report that Sept4, a member of the septin protein family, is consistently found in these inclusions, whereas five other septins (Sept2, Sept5, Sept6, Sept7, and Sept8) are not found in these inclusions. Sept4 and alpha-synuclein can also be co-immunoprecipitated from normal human brain lysates. When co-expressed in cultured cells, FLAG-tagged Sept4 and Myc-tagged alpha-synuclein formed detergent-insoluble complex, and upon treatment with a proteasome inhibitor, they formed Lewy body-like cytoplasmic inclusions. The tagged Sept4 and alpha-synuclein synergistically accelerated cell death induced by the proteasome inhibitor, and this effect was further enhanced by expression of another Lewy body-associated protein, synphilin-1, tagged with the V5 epitope. Moreover, co-expression of the three proteins (tagged Sept4, alpha-synuclein, and synphilin-1) was sufficient to induce cell death. These data raise the possibility that Sept4 is involved in the formation of cytoplasmic inclusions as well as induction of cell death in alpha-synuclein-associated neurodegenerative disorders.  相似文献   

19.
Ghee M  Melki R  Michot N  Mallet J 《The FEBS journal》2005,272(16):4023-4033
Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils.  相似文献   

20.
Conway KA  Harper JD  Lansbury PT 《Biochemistry》2000,39(10):2552-2563
Two missense mutations in the gene encoding alpha-synuclein have been linked to rare, early-onset forms of Parkinson's disease (PD). These forms of PD, as well as the common idiopathic form, are characterized by the presence of cytoplasmic neuronal deposits, called Lewy bodies, in the affected region of the brain. Lewy bodies contain alpha-synuclein in a form that resembles fibrillar Abeta derived from Alzheimer's disease (AD) amyloid plaques. One of the mutant forms of alpha-synuclein (A53T) fibrillizes more rapidly in vitro than does the wild-type protein, suggesting that a correlation may exist between the rate of in vitro fibrillization and/or oligomerization and the progression of PD, analogous to the relationship between Abeta fibrillization in vitro and familial AD. In this paper, fibrils generated in vitro from alpha-synuclein, wild-type and both mutant forms, are shown to possess very similar features that are characteristic of amyloid fibrils, including a wound and predominantly unbranched morphology (demonstrated by atomic force and electron microscopies), distinctive dye-binding properties (Congo red and thioflavin T), and antiparallel beta-sheet structure (Fourier transform infrared spectroscopy and circular dichroism spectroscopy). alpha-Synuclein fibrils are relatively resistant to proteolysis, a property shared by fibrillar Abeta and the disease-associated fibrillar form of the prion protein. These data suggest that PD, like AD, is a brain amyloid disease that, unlike AD, is characterized by cytoplasmic amyloid (Lewy bodies). In addition to amyloid fibrils, a small oligomeric form of alpha-synuclein, which may be analogous to the Abeta protofibril, was observed prior to the appearance of fibrils. This species or a related one, rather than the fibril itself, may be responsible for neuronal death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号