首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Propagation of long terminal repeat (LTR)-bearing retrotransposons and retroviruses requires integrase (IN, EC 2.7.7.-), encoded by the retroelements themselves, which mediates the insertion of cDNA copies back into the genome. An active retrotransposon family, BARE-1, comprises approximately 7% of the barley (Hordeum vulgare subsp. vulgare) genome. We have generated models for the secondary and tertiary structure of BARE-1 IN and demonstrate their similarity to structures for human immunodeficiency virus 1 and avian sarcoma virus INs. The IN core domains were compared for 80 clones from 28 Hordeum accessions representative of the diversity of the genus. Based on the structural model, variations in the predicted, aligned translations from these clones would have minimal structural and functional effects on the encoded enzymes. This indicates that Hordeum retrotransposon IN has been under purifying selection to maintain a structure typical of retroviral INs. These represent the first such analyses for plant INs.   相似文献   

7.
8.
9.
Active retrotransposons are a common feature of grass genomes   总被引:22,自引:0,他引:22  
  相似文献   

10.
The stability of aging barley calli was investigated with the barley retroelement 1 (BARE-1) retrotransposon specific inter-retrotransposon amplified polymorphism (IRAP) technique. Mature embryos of barley (Hordeum vulgare cv. Zafer-160) were cultured on callus induction MS medium supplemented with 3 mg/L 2,4-D and maintained on the same medium for 60 days. Ten IRAP primers were used in 25 different combinations. The similarity index between 30-day-old and 45-day-old calli was 84%; however, the similarity index between mature embryos and 45-day-old calli was 75%. These culture conditions caused BARE-1 retrotransposon alterations to appear as different band profiles. This is the first report of the use of the IRAP technique in barley in an investigation of callus development.  相似文献   

11.
12.
A fraction of highly repeated DNA sequences of Hordeum vulgare has been investigated by cloning 19 separate highly repetitive sequences in the plasmid pBR327. Characteristics studied included genus specificity of isolated sequences, their prevalence, and genome organization. Sequences (pHv7161, pHv7191, pHv7179) have been identified that are the most widespread in the H. vulgare genome and have a complicated arrangement. A tandemly arranged sequence, pHv7141, was also identified. The primary structure of a 999 bp long, BamHI fragment of one of the most widespread sequences, pHv7161, as well as the adjacent pHv7302 and pHv7245 sequences was determined. The fragment abounds in inverted repeats, of which two are flanked by direct repeats, and contains short subrepeats, A, B, and C, and a great variety of potential protein-binding sites. A comparison is drawn between the content and genome organization of highly repeated DNA sequences of H. vulgare and those of the wild barley species Hordeum bulbosum, Hordeum jubatum, Hordeum geniculatum, Hordeum brevisubulatum, Hordeum turkestanicum, and Hordeum murinum. According to the above characters (close copy number and genome organization similarity of highly repetitive sequences) the species under discussion have been classified into four groups. This division is in good agreement with other data on interspecific crossing in Hordeum and on chromosome pairing in hybrid meiosis.  相似文献   

13.
The Sequence-Specific Amplification Polymorphism (S-SAP) method, and the related molecular marker techniques IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism), are based on retrotransposon activity, and are increasingly widely used. However, there have been no systematic analyses of the parameters of these methods or of the utility of different retrotransposon families in producing polymorphic, scorable fingerprints. We have generated S-SAP, IRAP, and REMAP data for three barley (Hordeum vulgare L.) varieties using primers based on sequences from six retrotransposon families (BARE-1, BAGY-1, BAGY-2, Sabrina, Nikita and Sukkula). The effect of the number of selective bases on the S-SAP profiles has been examined and the profiles obtained with eight MseI+3 selective primers compared for all the elements. Polymorphisms detected in the insertion pattern of all the families show that each can be used for S-SAP. The uniqueness of each transposition event and differences in the historic activity of each family suggest that the use of multiple retrotransposon families for genetic analysis will find applications in mapping, fingerprinting, and marker-assisted selection and evolutionary studies, not only in barley and other Hordeum species and related taxa, but also more generally.  相似文献   

14.
15.
16.
To study genome evolution and diversity in barley (Hordeum vulgare), we have sequenced and compared more than 300 kb of sequence spanning the Rph7 leaf rust disease resistance gene in two barley cultivars. Colinearity was restricted to five genic and two intergenic regions representing <35% of the two sequences. In each interval separating the seven conserved regions, the number and type of repetitive elements were completely different between the two homologous sequences, and a single gene was absent in one cultivar. In both cultivars, the nonconserved regions consisted of approximately 53% repetitive sequences mainly represented by long-terminal repeat retrotransposons that have inserted <1 million years ago. PCR-based analysis of intergenic regions at the Rph7 locus and at three other independent loci in 41 H. vulgare lines indicated large haplotype variability in the cultivated barley gene pool. Together, our data indicate rapid and recent divergence at homologous loci in the genome of H. vulgare, possibly providing the molecular mechanism for the generation of high diversity in the barley gene pool. Finally, comparative analysis of the gene composition in barley, wheat (Triticum aestivum), rice (Oryza sativa), and sorghum (Sorghum bicolor) suggested massive gene movements at the Rph7 locus in the Triticeae lineage.  相似文献   

17.
We describe the construction of a specific yeast artificial chromosome (YAC) library from barley (Hordeum vulgare L.) using the vector pYAC-RC. The library was generated by total digestion of high molecular weight DNA with the infrequently cutting restriction enzyme MluI. Only 10-30% of the colonies were recombinant, as visualized by red-white selection and subsequent pulsed-field gel electrophoresis analysis. About 17 000 individual recombinant YAC clones with insert sizes ranging from 50 to 700 kb, with a mean of 170 kb, were selected. No chloroplast sequences were detected and the proportion of YAC clones containing BARE-1 copia-like retroelements is about 5%. Screening of the library with a single-copy RFLP marker closely linked to the Mla locus yielded three identical clones of the same size. Insert termini of randomly chosen YAC clones were investigated with respect to their redundancy in the barley genome and compared with termini of YAC clones from an EcoRI-based YAC library, resulting in a fourfold enrichment of single-copy sequences at the MluI vector-insert junctions.  相似文献   

18.
19.
20.
In plant species with large genomes such as wheat or barley, genome organization at the level of DNA sequence is largely unknown. The largest sequences that are publicly accessible so far from Triticeae genomes are two 60 kb and 66 kb intervals from barley. Here, we report on the analysis of a 211 kb contiguous DNA sequence from diploid wheat (Triticum monococcum L.). Five putative genes were identified, two of which show similarity to disease resistance genes. Three of the five genes are clustered in a 31 kb gene-enriched island while the two others are separated from the cluster and from each other by large stretches of repetitive DNA. About 70% of the contig is comprised of several classes of transposable elements. Ten different types of retrotransposons were identified, most of them forming a pattern of nested insertions similar to those found in maize and barley. Evidence was found for major deletion, insertion and duplication events within the analysed region, suggesting multiple mechanisms of genome evolution in addition to retrotransposon amplification. Seven types of foldback transposons, an element class previously not described for wheat genomes, were characterized. One such element was found to be closely associated with genes in several Triticeae species and may therefore be of use for the identification of gene-rich regions in these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号