首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.  相似文献   

2.
Chronic rhinosinusitis with nasal polyps (CRSwNP) and asthma frequently coexist and are always present in patients with aspirin exacerbated respiratory disease (AERD). Although the pathogenic mechanisms of this condition are still unknown, AERD may be due, at least in part, to an imbalance in eicosanoid metabolism (increased production of cysteinyl leukotrienes (CysLTs) and reduced biosynthesis of prostaglandin (PG) E2), possibly increasing and perpetuating the process of inflammation. PGE2 results from the metabolism of arachidonic acid (AA) by cyclooxygenase (COX) enzymes, and seems to play a central role in homeostasis maintenance and inflammatory response modulation in airways. Therefore, the abnormal regulation of PGE2 could contribute to the exacerbated processes observed in AERD. PGE2 exerts its actions through four G-protein-coupled receptors designated E-prostanoid (EP) receptors EP1, EP2, EP3, and EP4. Altered PGE2 production as well as differential EP receptor expression has been reported in both upper and lower airways of patients with AERD. Since the heterogeneity of these receptors is the key for the multiple biological effects of PGE2 this review focuses on the studies available to elucidate the importance of these receptors in inflammatory airway diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0100-7) contains supplementary material, which is available to authorized users.  相似文献   

3.
Prostaglandin E2 (PGE2) is a key lipid-derived compound which mediates important physiological functions in the nervous system via activation of four EP receptors (EP1-4). Recent studies have shown that altered PGE2 signalling due to abnormal lipid peroxidation and oxidative stress may underlie some pathologies of the nervous system. The prenatal exposure to the drug misoprostol, a prostaglandin type E analogue, has also been linked to a number of neurodevelopmental defects. In the present study, we use ratiometric calcium imaging with fura-2AM as a calcium indicator to determine the effects of PGE2 and misoprostol on calcium homeostasis in growth cones of mouse neuroblastoma (Neuro-2a) cells. Our results show that both drugs increase the amplitude of calcium transients in growth cones of Neuro-2a cells and induce neurite retraction. Moreover, quantitative real-time PCR also revealed that the mRNA expression level of the four EP receptors was significantly higher during the neurogenesis period in mouse indicating the importance of PGE2 signalling in the nervous system.  相似文献   

4.
5.
Both Wnt signaling and prostaglandin E2 (PGE2) play pivotal roles in bone development, remodeling, osteoporosis and prostate cancer (PCa) bone metastases. We investigated the effects of PGE2 on Wnt signaling in osteoblast-lineage cells and Wnt-inhibitor expression in PCa cells. We demonstrate that low dose PGE2 (0.1 μM) promotes Wnt signaling while higher doses of PGE2 (1.0-10 μM) inhibit these same parameters in osteoblast-lineage cells. The differential effects of low vs high-dose PGE2 on pre-osteoblasts may be attributed to dose-dependent modulation of prostaglandin receptor (EP) subtype expression; with lower doses increasing the expression the cAMP-stimulatory EP4 receptor subtype and higher doses increasing the expression of the cAMP-inhibitory EP3 receptor subtype. Moreover, we demonstrate that high expression levels of COX-2 and PGE2 promote the secretion of Wnt inhibitors from prostate cancer cells. These data demonstrate that there are dose-dependent effects of PGE2 on Wnt activation in osteoblast-lineage cells and Wnt-inhibitor expression in PCa cells which may have clinical implications in the management.  相似文献   

6.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1β, TNFα and IFNγ), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

7.

Aim

Many cancers originate and flourish in a prolonged inflammatory environment. Our aim is to understand the mechanisms of how the pathway of prostaglandin E2 (PGE2) biosynthesis and signaling can promote cancer growth in inflammatory environment at cellular and animal model levels.

Main methods

In this study, a chronic inflammation pathway was mimicked with a stable cell line that over-expressed a novel human enzyme consisting of cyclooxygenase isoform-2 (COX-2) linked to microsomal (PGE2 synthase-1 (mPGES-1)) for the overproduction of pathogenic PGE2. This PGE2-producing cell line was co-cultured and co-implanted with three human cancer cell lines including prostate, lung, and colon cancers in vitro and in vivo, respectively.

Key findings

Increases in cell doubling rates for the three cancer cell types in the presence of the PGE2-producing cell line were clearly observed. In addition, one of the four human PGE2 subtype receptors, EP1, was used as a model to identify PGE2-signaling involved in promoting the cancer cell growth. This finding was further proven in vivo by co-implanting the PGE2-producing cells line and the EP1-positive cancer cells into the immune deficient mice, after that, it was observed that the PGE2-producing cells promoted all three types of cancer formation in the mice.

Significance

This study clearly demonstrated that the human COX-2 linked to mPGES-1 is a pathway that, when mediated by the EP, is linked to promoting cancer growth in a chronic inflammatory environment. The identified pathway could be used as a novel target for developing and advancing anti-inflammation and anti-cancer interventions.  相似文献   

8.
β1-Integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of β1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of β1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of β1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of β1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition.  相似文献   

9.
Prostaglandin E2 (PGE2) is responsible for inflammatory symptoms. However, PGE2 also suppresses pro-inflammatory cytokine production. There are at least 4 subtypes of PGE2 receptors, EP1–EP4, but it is unclear which of these specifically control cytokine production. The aim of this study was to determine which of the different receptors, EP1R–EP4R modulate production of tumor necrosis factor-α (TNF-α) in human monocytic cells.Human blood, or the human monocytic cell line THP-1 were stimulated with LPS. The actions of PGE2, alongside selective agonists of EP1–EP4 receptors, were assessed on LPS-induced TNF-α, IL-1β and IL-10 release. The expression profiles of EP2R and EP4R in monocytes and THP-1 cells were characterised by RT-qPCR. In addition, the production of cytokines was evaluated following knockdown of the receptors using siRNA and over-expression of the receptors by transfection with constructs.PGE2 and also EP2 and EP4 agonists (but not EP1 or EP3 agonists) suppressed TNF-α production in blood and THP-1 cells. LPS also up regulated expression of EP2R and EP4R but not EP1 or EP3. siRNA for either EP2R or EP4R reversed the suppressive actions of PGE2 on cytokine production and overexpression of EP2R and EP4R enhanced the suppressive actions of PGE2.This indicates that PGE2 suppression of TNF-α by human monocytic cells occurs via EP2R and EP4R expression. However EP4Rs also control their own expression and that of EP2 whereas the EP2R does not affect EP4R expression. This implies that EP4 receptors have an important master role in controlling inflammatory responses.  相似文献   

10.
Exogenously administered adenosine agonist will protect myocardium against infarction during ischemia. However, long-term exposure to adenosine agonists is associated with loss of this protection. To determine why this protection is lost, isolated, perfused rabbit hearts were studied after administration of R(-)-N6-(2-phenylisopropyl)adenosine (PIA), 0.25 mg/h IP, for 3-4 days to intact animals. All hearts experienced 30 min of regional ischemia and 120 min of reperfusion. Control groups 1 and 2 were untreated. In group 1 this ischemia/reperfusion was the only intervention, whereas group 2 hearts were preconditioned with a cycle of 5 min global ischemia/10 min reperfusion preceding the 30 min regional ischemia. Groups 3-5 had been chronically exposed to PIA. Group 3 hearts had 1 preconditioning ischemia/reperfusion cycle before the prolonged ischemia. Group 4 received a 5 min infusion of 0.1 mol/L phenylephrine in lieu of global ischemia, whereas group 5 was instead treated with 1 mol/L carbachol. Infarct size averaged 32% of the risk zone in group 1, whereas ischemic preconditioning limited infarction to 8.2 in group 2. Prolonged exposure of group 3 hearts to PIA resulted in the inability of preconditioning with 5 min global ischemia to protect (28.7 ± 4.4% infarction). However, protection was restored by either phenylephrine, an agonist of 1-adrenergic receptors which couple to Gq and stimulate PKC, or carbachol, an agonist of M2-muscarinic receptors which couple instead to Gi as do adenosine A1 receptors (5.2 ± 1.7% and 9.2 ± 2.1% infarction, resp.). Therefore, cross tolerance to ischemic preconditioning develops after chronic PIA infusion. Since both the Gi and the PKC components of the preconditioning pathway were shown to be intact, tolerance must have been related to downregulation or desensitization of the A1 adenosine receptor.  相似文献   

11.
Gastrointestinal ulcerogenic effect of indomethacin is causally related with an endogenous prostaglandin (PG) deficiency, yet the detailed mechanism remains unknown. We examined the effect of various PGE analogues specific to EP receptor subtypes on these lesions in rats and mice, and investigated which EP receptor subtype is involved in the protective action of PGE(2). Fasted or non-fasted animals were given indomethacin s.c. at 35 mg/kg for induction of gastric lesions or 10-30 mg/kg for intestinal lesions, and they were killed 4 or 24 h later, respectively. Various EP agonists were given i.v. 10 min before indomethacin. Indomethacin caused hemorrhagic lesions in both the stomach and intestine. Prior administration of 16,16-dimethyl PGE(2) (dmPGE(2)) prevented the development of damage in both tissues, and the effect in the stomach was mimicked by 17-phenyl PGE2 (EP1), while that in the small intestine was reproduced by ONO-NT-012 (EP3) and ONO-AE-329 (EP4). Butaprost (EP2) did not have any effect on either gastric or intestinal lesions induced by indomethacin. Similar to the findings in rats, indomethacin caused gastric and intestinal lesions in both wild-type and knockout mice lacking EP1 or EP3 receptors. However, the protective action of dmPGE(2) in the stomach was observed in wild-type and EP3 receptor knockout mice but not in mice lacking EP1 receptors, while that in the intestine was observed in EP1 knockout as well as wild-type mice but not in the animals lacking EP3 receptors. These results suggest that indomethacin produced damage in the stomach and intestine in a PGE(2)-sensitive manner, and exogenous PGE(2) prevents gastric and intestinal ulcerogenic response to indomethacin through different EP receptor subtypes; the protection in the stomach is mediated by EP1 receptors, while that in the intestine mediated by EP3/EP4 receptors.  相似文献   

12.
The molecular mechanisms of preconditioning-induced ischemic tolerance (PCIT) have yet to be elucidated. We investigated whether minimal expression levels of COX-2 induced by preconditioning trigger HO-1, thereby inducing the synthesis of cytoprotective proteins. We show that both COX-2 and HO-1 are induced in rat brains subjected to preconditioning by middle cerebral artery (MCA) occlusion for 10 min followed by different amounts of reperfusion time (1-24 h). Although preconditioning significantly reduced the brain infarct size against severe ischemia (24 h MCA occlusion), pretreatment with the COX-2-selective inhibitor rofecoxib increased infarct size and abolished PCIT-induced COX-2 and HO-1 expression in vivo. We also found that PGE2 increased the phosphorylation of Akt, which was significantly inhibited by the PI3 kinase inhibitor LY294002. Taken together, we conclude that the kinetic changes in COX-2 induction during the reperfusion period following preconditioning may be important for ischemic tolerance.  相似文献   

13.
It has been anticipated that the inherent limitations of radioimmunoassays for prostaglandin E (PGE) would be obviated by assays for its major circulating metabolite, 15-keto, 13,14-dihydro PGE2 (KH2-PGE2) which has a longer half-life in blood. We examined the effects of PGE2 infusion and alterations in lipolysis , and of clotting, prolonged storage and hemolysis , on KH2-PGE2 immunoreactivity in unextracted human plasma and serum samples. Indeed KH2-PGE2 levels rose several hundred fold during infusions of PGE2 at doses which cause little or no increment in peripheral PGE levels. During stimulation of lipolysis by infusions of epinephrine, apparent KH2-PGE2 levels rose five-fold. However, the dilution curve of plasma obtained during stimulation of lipolysis was not parallel to the standard curve; furthermore, apparent KH2-PGE2 levels were correlated strongly with free fatty acid (FFA) levels, suggesting that FFA's cross-reacted in the RIA weakly but significantly due to their very high molar concentration in blood. Clotting and prolonged storage of samples, but not hemolysis, also caused marked apparent increments in KH2-PGE2 levels. Competition curves using dilutions of such samples were again not parallel to the standard curves in plasma or buffer, but resembled dilution curves of samples containing high levels of FFA. These results suggest that handling of human blood samples for KH2-PGE2 measurement must be carefully standardized to avoid significant artifacts which presumably are due in part to fatty acids released from triglyceride stores or from disrupted membrane phospholipids . Unextracted plasma appears to be unsatisfactory for use in this RIA.  相似文献   

14.
This study was designed to compare the effects of dietary arachidonic acid (AA) versus prostaglandin E2 (PGE2) on bone cell metabolism and bone mass. Twenty-eight piglets from 7 litters were randomized to 1 of 4 treatments for 15 days: fatty acid supplemented formula (FA: 0.8% of total fatty acids as AA and 0.1% of total fatty acids as DHA)+PGE2 injections (0.1 mg/kg/day), FA+saline injections, standard formula (STD: n-6:n-3 of 8:1) + PGE2 injections or STD+saline injections. PGE2 resulted in elevated osteoblast activity as indicated by plasma osteocalcin and also reduced urinary calcium excretion. Dietary FA resulted in reduced bone resorption as indicated by urinary N-telopeptide and reduced bone PGE2. Both PGE2 and FA treatments independently lead to elevated femur mineral content, but the combined treatment caused a reduction. Thus the mechanisms by which PGE2 and FA lead to enhanced bone mass are distinct.  相似文献   

15.
Myocardial ischemic preconditioning and mitochondrial F1F0-ATPase activity   总被引:1,自引:0,他引:1  
A short period of ischemia followed by reperfusion (ischemic preconditioning) is known to trigger mechanisms that contribute to the prevention of ATP depletion. In ischemic conditions, most of the ATP hydrolysis can be attributed to mitochondrial F1F0-ATPase (ATP synthase). The purpose of the present study was to examine the effect of myocardial ischemic preconditioning on the kinetics of ATP hydrolysis by F1F0-ATPase. Preconditioning was accomplished by three 3-min periods of global ischemia separated by 3 min of reperfusion. Steady state ATP hydrolysis rates in both control and preconditioned mitochondria were not significantly different. This suggests that a large influence of the enzyme on the preconditioning mechanism may be excluded. However, the time required by the reaction to reach the steady state rate was increased in the preconditioned group before sustained ischemia, and it was even more enhanced in the first 5 min of reperfusion (101 ± 3.0 sec in preconditioned vs. 83.4 ± 4.4 sec in controls, p 0.05). These results suggest that this transient increase in activation time may contribute to the cardioprotection by slowing the ATP depletion in the very critical early phase of post-ischemic reperfusion.  相似文献   

16.
Cyclooxygenase 2 and release of prostaglandin E2 are involved in many responses including inflammation and are upregulated during cellular senescence. However, little is known about the role of lipid inflammatory mediators in senescence. Here, we investigated the mechanism by which the COX-2/PGE2 axis induces senescence. Using the NS398 specific inhibitor of COX-2, we provide evidence that reactive oxygen species by-produced by the COX-2 enzymatic activity are negligible in front of the total senescence-associated oxidative stress. We therefore investigated the role of PGE2 by invalidating the PGE2 synthases downstream of COX-2, or the specific PGE2 receptors, or by applying PGE2 or specific agonists or antagonists. We evaluated the effect on senescence by evaluating the senescence-associated proliferation arrest, the percentage of senescence-associated β-galactosidase-positive cells, and the expression of senescent molecular markers such as IL-6 and MCP1. We show that PGE2 acting on its EP specific receptors is able to induce both the onset of senescence and the maintenance of the phenotype. It did so only when the PGE2/lactate transporter activity was enhanced, indicating that PGE2 acts on senescence more via the pool of intracellular EP receptors than via those localized at the cell surface. Treatment with agonists, antagonists and silencing of the EP receptors by siRNA revealed that EP3 was the most involved in transducing the intracrine effects of PGE2. Immunofluorescence experiments confirmed that EP3 was more localized in the cytoplasm than at the cell surface. Taken together, these results suggest that COX-2 contributes to the establishment and maintenance of senescence of normal human fibroblasts via an independent-ROS and a dependent-PGE2/EPs intracrine pathway.  相似文献   

17.

Objective

To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2) in human pulmonary epithelial cells (A549).

Methods

A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS) in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2) was measured by enzyme-linked immunosorbent assay (ELISA). The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively.

Results

LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P < 0.05).

Conclusion

Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.  相似文献   

18.
Nonsteroidal anti-inflammatory drugs (NSAIDs) can decrease the risk of colorectal cancer; however, it has not been established if this effect is solely through their ability to inhibit cyclooxygenase (COX). In this study the effects of indomethacin, a potent NSAID and nonselective COX inhibitor, was examined in LS174T human colon cancer cells. These cells were found to express EP2 prostanoid receptors, but not the EP1, EP3 or EP4 subtypes. Pretreatment of LS174T cells with indomethacin produced a complete inhibition of prostaglandin E(2) (PGE(2)) stimulated cyclic AMP (cAMP) formation in a dose dependent manner with an IC(50) of 21 microM. Interestingly, the inhibition of PGE(2)-stimulated cAMP formation by indomethacin was accompanied by a decrease in EP2 mRNA expression and by a decrease in the whole cell specific binding of [(3)H]PGE(2). Thus, treatment of LS174T cells with indomethacin causes a down regulation of EP2 prostanoid receptors expression that may be independent of COX inhibition.  相似文献   

19.
Global cerebral ischemia induced to Mongolian gerbils by ligation of common carotid arteries (CCAs) is known to result in injury to the hippocampal CA1 region. In this study, we examined whether neuronal injury can be depicted by measuring levels of mRNA encoding inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), neuron specific enolase (NSE) and -actin and whether these measurements can be use to assess ischemic tolerance. Gerbils were subjected either to cerebral ischemia induced by ligation of both CCAs for 5 min, or to an ischemic tolerance paradigm in which a 2 min ischemic preconditioning was performed 24 hr prior to the 5 min ischemia. At 48 hr after the 5 min ischemic insult, significant decreases in mRNA levels for IP3R1 (26%), NSE (38%) and -actin (50%) could be observed in the hippocampal CA1 region. Although levels of mRNA in the preconditioning group were decreased as compared to the sham control, the levels were significantly higher than those in the ischemic group. These results indicate the feasibility of using mRNA measurement as a parameter to assess cerebral ischemic damage. In addition, based on the differences in the decline in mRNA levels between the ischemia group and the preconditioned ischemia group, it can be concluded that this ischemic tolerance paradigm could offer partial protection (around 45%) against the injury due to the 5 min cerebral ischemic insult.  相似文献   

20.
A group of 84 women at 39 – 43 weeks of pregnancy were randomly allocated to a blind trial of induction of labor with vaginal suppositories containing inert material or either 0.2 mg or 0.4 mg of prostaglandin E2. The suppositories were self-administered every two hours during waking hours on two successive days until labor started or 15 had been used. Side-effects were absent. Labor was established within 48 hr of insertion of the first suppository in 9.3% of control patients, 65.4% of those treated with 0.2 mg PGE2 and 85.7% of those treated with 0.4 mg PGE2. The mean Apgar scores in the three groups were the same. The mean total dose of PGE2 were 2.0 mg (0.2 mg group) and 2.3 mg (0.4 mg group). It is concluded that vaginal PGE2 is an effective and acceptable method of inducing labor at term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号