首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
落叶松人工林群落生物生产力的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
本文对黑龙江省帽儿山地区海拔300—350m的24年生,四种结构类型的兴安落叶松(Larix gmelini)人工林的群落学特性、生物量和生产量进行了测定和研究。按平均标准木法和样方收获法分别调查了乔木层、幼树下木层,草本地被物层及枯枝落叶层的生物量。结果表明:人工落叶松林乔木层不同组合的分布格局,形成了不同的群落结构特征及生物生产力。四种结构群落总平均生物量为159.445t/ha,净生产量为12.237t/ha·a;其中乔木层平均生物量为149.560t/ha,净生产量为9.627t/ha·a。乔木层盖度制约着群落的空间结构,使群落叶量及叶面积指数等叶的数量指标产生差异从而影响群落的生物生产力及光能利用率。在一定范围内,乔木层郁闭度由0.9减少至0.7,其叶面积指数由3.07增加到6.66,整个群落总的累积叶面积指数由3.315增加到9.220群落平均净生产量增加了105.28%,乔木层的平均净生产量增加了39.89%。  相似文献   

2.
内乡宝天曼自然保护区锐齿栎林生物量和净生产力研究   总被引:15,自引:1,他引:14  
对河南内乡宝天曼自然保护区35年生天然次生锐齿栎林生物量和净生产力进行了测定和研究。结果表明:锐齿栎林生物量为141.17t/hm^2,净生产力为7.39t/(hm^2.a),,其中乔木层生物量为128.30t/(hm^2.a),占总生物量的90.88%,净生产力为6.30t/(hm^2.a),占总净生产力的85.25%,生物量平均相对生长速度为0.1238。灌木层、草本层的生物量和净生产力分别占总的0.79%和0.37%、5.82%5和4.87%。调落物层现存量为11.23t/(hm^2.a),占总生物量的7.95%,年凋落物量3.37t/(hm^2.a),占总净生产力的45.60%,净生产量与叶面积指数,叶量成正相关,而与叶效率成负相关。  相似文献   

3.
云南哀牢山中山湿性常绿阔叶林生物量的初步研究   总被引:5,自引:0,他引:5       下载免费PDF全文
 中山湿性常绿阔叶林是云南省亚热带山地植被垂直带的主要类型,其中分布在哀牢山上的木果石栎、景东石栎、腾冲栲林(Lithocarpus xylocarpus、 L. chintungensis、Castanopsis wattii forest)尤其具有代表性。本文用收获法、相关曲线法测定并估算了该群落近熟林和成过熟林的生物量与年平均净积累量,结果分别为508.57t/hm2,12.1051t/(hm2·a);293.04t/hm2,7.7443t/(hm2·a),对产生差异的原因作了分析。林分的叶面积指繰果分别为508.57t/hm2,文中还提出了群落乔木优势种各器官生物量估测的回归模型,并从生物量的角度阐明建群种在群落中的地位。  相似文献   

4.
尖峰岭热带山地雨林生物量的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 本文用对比研究法对海南岛尖峰岭热带山地雨林原始林和更新林的地上部分生物现存量进行了测定,结果表明:未受干扰破坏的森林其生物量积累可达到较高的水平,原始林和更新林的生物现存量(包括凋落物现存量)分别为645.2和272.9t/ha,乔木层生物量占群落生物量的94%以上,表明了乔木层在森林生态系统中的重要地位和作用,而通过对原始林和更新林的生物产量结构的分析,反映出它们之间的一些差异性。林分的叶面积指数(LAI值)分别高达16.70和9.07,说明所调查的两个群落具有较高的生产力水平。热带林的早期更新速度很快,26年生的天然更新林分其生物量年平均净积累达9.8658t/ha·a,明显高于成熟林的6.2421t/ha·a,接近中等集约经营的热带人工林的生产力水平。  相似文献   

5.
 本文研究了安徽大别山天然林内16年生银鹊树和引种于南京的银鹊树幼苗及人工幼林的生物量,分析了光能利用率。研究结果表明:(1)常规芦蒹遮光,一龄苗的生物量为1777.5kg/ha。以一层塑料纱遮光处理的幼苗生物量最大,全光照的幼苗生物量居第二、三层纱遮光生物量最小。(2)天然林内16年生单株银鹊树地上部分干重为107.77kg。(3)8年生人工银鹊树林总生物量为80.63t/ha,其中乔木层平均净生产量为9.563t/ha·a,高于湖南会同、朱亭及江苏南部的杉木林。(4)银鹊树林总初级生产量为1219.18g/m2·a;其中乔木层为956.25g/m2·a,草本及天然幼苗为161.10g/m 2·a,枯枝落叶为101.83g/m2·a.光能利用率为0.527%,其中乔木层的光能利用率为0.417%。  相似文献   

6.
海南五针松人工林分生物量的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
 本文是对海拔930m的17年生海南五针松(Pinus fanzeliana)人工林分生物量和生产力进行了测定和研究。按平均标准木法和样方收获法分别调查了乔木层,灌木层,草本地被物层和枯枝落叶层。据调查数,建立了估测乔木层单株林木各器官干重的回归方程。方程的相关系数和估测精度都较高,具有参考价值.分析结果表明:林分总生物量平均为161.152t/ha,生产力为10630.69kg/(ha·a),其中:乔木层生物量为149.351t/ha,生产力为11095kg/(ha·a),叶面积为199248.734m2/ha,叶面积指数为19.9149m2/m2。  相似文献   

7.
刘文耀   《广西植物》1995,15(4):327-334
昆明北郊松华坝水源保护区10年生圣诞树人工林分生物量为137.926t/hm2,净生产量为24.128t/hm2·a,其中乔木层生物量为130.418t/hm2,净生产量为19.369t/hm2·a,下木和草本植物生物量和净生产量分别为0.935t/hm2和0.609t/hm2·a,枯枝落叶层现存量和林分凋落物量分别为6.573t/hm2和4.150t/hm2·a。在林分产量结构方面,10m以下树干生物量占其总量的98.37%,4~12m之间枝、叶生物量分别占整个枝、叶生物量的85.51%和94.90%,地下根系在离地面20cm深土层内的生物量占总根量的73.04%。目前,该类林分群落结构不合理,整体效应较差,保持水土作用未能充分发挥出来。应及时进行间伐,调整群落产量结构;注重对林下地被植物及枯枝落叶层的保护,以提高其综合效益。  相似文献   

8.
浙北平原水杉人工林生物量的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 本文对浙江省北部平原水杉人工林的生物量和生产力进行了测定和研究。按平均标准木法分别调查了干、枝、叶、根的生物量。据调查材料,用相对生长规律建立了估测单株林木各器官干重的回归方程,方程的相关系数和估测精度符合要求,具实用价值。研究结果表明:水杉人工林生物量随年龄的增长而增加,林带18年生后增加速度变缓,片林生物量普遍大于林带生物量,生物量组成比例因年龄而异。随着年龄的增加,年平均净生产量、叶面积指数、光能利用率均逐步加大,至18年生时,上述指标分别为17.51t/ha·a、9.1和0.77%。叶净光合生产率以速生阶段为最大,衰退阶段为最低,当叶净光合生产率急剧下降时,可实施主伐更新。  相似文献   

9.
红皮云杉人工林乔木层生物量的研究   总被引:6,自引:0,他引:6  
穆丽蔷  张捷 《植物研究》1995,15(4):551-557
本文对黑龙江省绥棱林区红皮云杉人工林的生物量和净生产量进行了测定和研究。按平均标准木法调查并分析了林龄为6~31年红皮云杉人工林乔木层干、皮、枝、叶、根的生物量、净生产量及其分配.用维量分析法建立了估测乔水层单株林木各器官生物量的回归方程,方程的相关系数和估测精度较高,具有参考价值。分析结果表明:红皮云杉人工林乔木层生物量随年龄的增长而增加,到31年生,林分总生物量平均为151.13t·hm-2,净生产量并不是随着年龄规律是增长,积累速度快慢不一,一般在30年左右其净生产量值为11~14t·hm-2·a-1,表明红皮云杉人工林群落具有较高的生物生产力。  相似文献   

10.
马尾松-阔叶树混交异龄林生物量与生产力分配格局   总被引:14,自引:1,他引:14  
在25年生的马尾松林下分别套种1年生火力楠、闽粤栲、苦槠、格氏栲、青栲和拉氏栲幼苗,经过16a的培育后形成了郁闭的针阔混交异龄林。应用分层平均标准木收获法,建立相对生长方程,对上述6种混交林及马尾松纯林的生物量与生产力分配格局进行了研究。6个混交林的林木总生物量分别为216·41、260·06、221·92、221·65、246·13t/hm2及201·04t/hm2,而马尾松纯林的生物量为204·37t/hm2;其中地上部分占81·4%~83·7%,林分之间差异较小。在混交林中,处于主林层的马尾松生物量占林分总生物量的比例为73·5%~85·4%。在各林分生物量组成中,干材生物量最大,占总生物量的56·4%~64·8%,其它组分所占的比例依次为根(16·3%~18·6%)>枝(9·0%~16·9%)>皮(4·9%~7·3%)>叶(1·1%~4·3%)。生物量的空间结构在马尾松纯林和混交林之间存在明显差异,混交林中0~9m高度的生物量分配比例(67·1%)明显大于马尾松纯林(53·7%);混交林中,在2~3m高度就出现了枝、叶的分布,而马尾松纯林中则出现在13~14m。混交林中,阔叶树根系的生物量主要集中于0~40cm土层,占根系总生物量的74%~99%,60cm以下土层则根系分布很少,而马尾松的根系则主要分布于土壤表层(0~20cm)和60cm以下土层,分别占总生物量的26%和49%。各混交林分的净初级生产力为10·60~15·25t/(hm2·a),而马尾松纯林的生产力仅7·34t/(hm2·a)。林分净初级生产力(NPP)与光合器官/地上部分生物量比(X1)、细根生物量/地下部分生物量比(X2)存在显著的非线形关系:NPP=5·5745+1·1985X1+2·6479X22。在所研究的林分中,细根(d<2mm)生物量占林分总生物量的平均比例为0·2%,但细根生产力占林分净生产力的平均比达2·9%。  相似文献   

11.
Hessen  Dag O.  Faafeng  Bj&#;rn A.  Brettum  P&#;l 《Hydrobiologia》2003,491(1-3):167-175
A survey on phytoplankton:zooplankton biomass ratios was performed in 342 Norwegian lakes, covering a wide range in lake size and productivity (total phosphorus: 3–246 g l–1), but with most localities being oligo- to mesotrophic. Mean phytoplankton biomass was 88 g C l–1, yet with the majority below 50 g C l–1and a median of 25 g C l–1. Total zooplankton biomass displayed a mean and median of 37 and 26 g C l–1, respectively. Cladocerans were by far the dominant group, making up a median of almost 60% of total zooplankton biomass. Total zooplankton biomass as well as that of major aggregated metazoan taxa (cladocerans, calanoid copepods, cyclopoid copepods and rotifers) all showed a positive, but weak correlation with total phytoplankton biomass. These weak correlations suggest that algal biomass per se is a poor predictor of zooplankton biomass. An average phyto-:zooplankton biomass ratio (C:C) of 2.8 (SD±4.7) was found. 30% of the lakes had a phyto-:zooplankton biomass ratio below unity. While there was no correlation between the phyto-:zooplankton biomass ratio with increasing productivity in terms of P concentration, there was a higher biomass ratio in lakes with high fish predation pressure. The low ratio of phyto-:zooplankton biomass suggest major requirements from non-algal sources of C in the zooplankton diet. The need for dietary subsidizing is also supported by the fact that more than 75% of the lakes had algal biomass less than the estimated threshold for net positive growth of zooplankton, although it should be kept in mind that a high share of picoplankton would imply an underestimation of autotroph biomass in these lakes. Since the C-deficiency apparently is most pronounced in oligotrophic systems, it contradicts the view that the detritus pathways plays a predominant role in highly productive systems only, but while the source of detritus probably is mostly of autochthonous origin in eutrophic lakes, allochthonous detritus will be more important in oligotrophic systems.  相似文献   

12.

Aims

We assessed the temporal changes on microbial biomass in relation to changes in soil moisture, dissolved organic carbon and plant biomass during the summer season in a Mediterranean high-mountain grassland.

Methods

Temporal variations were tested by two-way ANOVA. The relationships among microbial biomass, plant biomass, soil water content, soil organic carbon, dissolved organic carbon and total soil nitrogen during the summer season were assessed by means of structural equation modeling.

Results

Microbial biomass did not show variation, while dissolved organic carbon and root biomass decreased throughout the summer. Aboveground plant biomass peaked in the middle of the summer, when soil water content was at its minimum. Soil water content directly and negatively affected soil microbial biomass, and positively affected dissolved organic carbon. Moreover soil microbial biomass and dissolved organic carbon were negatively related. Plant biomass effects on soil microbial biomass were driven by root biomass, which indirectly affected soil microbial biomass through effects on soil organic carbon and soil nitrogen.

Conclusions

The temporal dynamic of microbial biomass during the summer season appeared to differ from previous observations in temperate alpine communities, and indicated the drought resistance of the microbial community during the summer in Mediterranean high-mountain grasslands. During the dry period, microbial biomass may play an alternative role in soil carbon conservation.  相似文献   

13.
Spatial pattern changes in aboveground plant biomass in a grazing pasture   总被引:1,自引:0,他引:1  
Using gamma distribution and spatial autocorrelation, it was demonstrated that plant biomass per unit area of a pasture grazed by cattle exhibited two kinds of spatial heterogeneity: small-scale heterogeneity caused by grazing and large-scale heterogeneity caused by topography, land aspect, etc. For each of the 10 measurement times from May to August, 100 quadrats 50cm × 50cm were arranged along a straight line 50m long in a pasture, and the plants within the quadrats were harvested at the height of 3cm above the ground surface to measure the dry weight. The data were aggregated into frequency distributions, and gamma distribution and the parameter values were estimated. This analysis showed that with the progression of grazing the amount of biomass decreased and the degree of spatial heterogeneity in biomass, measured per 0.25m2, increased, and due to plant regrowth the trends were reversed. By rearranging the 100 biomass data in order of weight, it was suggested that plots with an extremely large biomass were not grazed by cattle and remained in the pasture. For the same data, variations of biomass along the straight line were divided into two parts based on the moving average: the spatial trend and the residuals which cannot be explained by the trend. In this analysis, 48–75% of the total spatial variation was explained by the trend along the straight line. Analysis using spatial autocorrelation for the actual biomass changes showed that the biomass changes within a range of about 10m on the straight line gave a positive correlation, which indicates a topographical trend in biomass. Spatial autocorrelation for residuals suggested that the spatial changes in biomass along the straight line followed a wave-like or checker-board pattern. Small-scale spatial heterogeneity in plant biomass may be caused by the uneven deposition of excreta by grazing animals, uneven use of the grassland by grazing animals, and uneven dispersal of plant seeds through faeces over the grassland. The possibility that such unevenness might accelerate energy flow in the grassland ecosystem and contribute to grassland sustainability is discussed.  相似文献   

14.
The relative strength of "top-down" versus "bottom-up" control of plankton community structure and biomass in two small oligotrophic lakes (with and without fish), located near the Polar circle (Russia), has been investigated for two years, 1996 and 1997. The comparative analyses of zooplankton biomass and species abundance showed strong negative effect of fish, stickeback (Pungitius pungitius L.), on the zooplankton community species, size structure and biomass of particular prey species but no effect on the biomass of the whole trophic level. An intensive predation in Verkhneye lake has lead to: 1) sixfold decline in biomass of large cladoceran Holopedium gibberum comparing to the lake lacking predator, 2) shift in the size mode in zooplankton community and the replacement of the typical large grazers by small species--Bosmina longirostris and rotifers. Their abundance and biomass even increased, demonstrating the stimulating effect of fish on the "inefficient" and unprofitable prey organisms. The analysis of contributions of different factors into the cladoceran's birth rate changes was applied to demonstrate the relative impact of predators and resources on zooplankton abundance. An occasional introduction of the stickleback to Vodoprovodnoye lake (the reference lake in 1996) in summer 1997 lead to drastic canges in this ecosystem: devastating decrease of zooplankton biomass and complete elimination of five previously dominant grazer species. The abundance of edible phytoplankton was slightly higher in the lake with fish in 1996 and considerably higher in the lake where fish has appeared in 1997 showing the prevailing "top-down" control of phytoplankton in oligotrophic ecosystem. The reasons of trophic cascade appearance in oligotrophic lakes are also discussed.  相似文献   

15.
Conventionally, production of methyl ester fuels from microalgae occurs through an energy-intensive two-step chemical extraction and transesterification process. To improve the energy efficiency, we performed in situ enzymatic conversion of whole algae biomass from an oleaginous heterokont microalga Nannochloropsis oceanica IMET1 with the immobilized lipase from Candida antarctica. The fatty acid methyl ester yield reached 107.7% for dry Nannochloropsis biomass at biomass to t-butanol to methanol weight ratio of 1:2:0.5 and a reaction time of 12 h at 25 °C, representing the first report of efficient whole algae biomass conversion into fatty acid methyl esters at room temperature. Different forms of algal biomass including wet Nannochloropsis biomass were tested. The maximum yield of wet biomass was 81.5%. Enzyme activity remained higher than 95% after 55 days of treatment (equal to 110 cycles of reaction) under the conditions optimized for dry algae biomass conversion. The low reaction temperature, high enzyme stability, and high yield from this study indicate in situ enzymatic conversion of dry algae biomass may potentially be used as an energy-efficient method for algal methyl ester fuel production while allowing co-product recovery.  相似文献   

16.
Seasonal variations in abundance and carbon biomass of ciliated protozoa and micrometazoa were studied from May 1998 to November 1999 in the eutrophicated area of Katela Bay (Middle Adriatic Sea). Ciliates showed peaks in spring and autumn, primarily due to changes in the abundance and biomass of tintinnines, which participated in total ciliate abundance and biomass with 40.48 and 60.02%, respectively. The highest tintinnine density was 4,278 ind. l–1, while their average biomass varied from 0.611 to 26.557 gC l–1 . Maximal average density and biomass of non-loricates were 1,430 ind. l–1 and 3.925 gC l–1, respectively. The micrometazoa community was dominated by copepod nauplii, especially during the summer and autumn. The copepod biomass ranged between 3.47 and 26.75 gC l–1 . High abundance and biomass values of the investigated zooplankton groups point to an important role of these organisms in the secondary production in the Bay, indicating that they may be (1) a crucial factor in controlling the populations of nano-/pico-phytoplankton and heterotrophic nanoflagellates, and (2) a significant prey for larger micrometazoans.  相似文献   

17.
Summary Protozooplankton were sampled in the iceedge zone of the Weddell Sea during the austral spring of 1983 and the austral autumn of 1986. Protozooplankton biomass was dominated by flagellates and ciliates. Other protozoa and micrometazoa contributed a relatively small fraction to the heterotrophic biomass. During both cruises protozoan biomass, chlorophyll a concentrations, phytoplankton production and bacterial biomass and production were low at ice covered stations. During the spring cruise, protozooplankton, phytoplankton, and bacterioplankton reached high concentrations in a welldeveloped ice edge bloom 100 km north of the receding ice edge. During the autumn cruise, the highest concentrations of biomass were in open water well-separated from the ice edge. Integrated protozoan biomass was <12% of the biomass of phytoplankton during the spring cruise and in the autumn the percentages at some stations were >20%. Bacterial biomass exceeded protozooplankton biomass at ice covered stations but in open water stations during the fall cruise, protozooplankton biomass reached twice that of bacteria in the upper 100m of the water column. The biomass of different protozoan groups was positively correlated with primary production, chlorophyll a concentrations and bacterial production and biomass, suggesting that the protozoan abundances were largely controlled by prey availability and productivity. Population grazing rates calculated from clearance rates in the literature indicated that protozooplankton were capable of consuming significant portions of the daily phyto- and bacterioplankton production.  相似文献   

18.
采用平均标准木法及分层切割法研究了不同干扰强度对马尾松林地上部分生物量和生产力的影响.并对3个林分蓄积量、各器官相对比例进行了比较分析。结果表明。马尾松林分地上部分总生物量、各器官生物量及净生产力均随干扰强度的减轻而增加,轻度干扰有利于林分生物量和蓄积量的积累及生产力的提高。  相似文献   

19.
    
Song Biyu 《Hydrobiologia》2000,434(1-3):151-163
Species composition, seasonal changes in abundance and biomass of planktonic protozooplankton (ciliates, heliozoans and testaceans), and dynamics of the dominant species were investigated over more than two years in two shallow mesotrophic lakes. The macrophyte-dominated lake Biandantang had more protozoan species than the algal lake Houhu, and the two lakes had significantly different protozoan abundance and biomass patterns, compositions and dominants. On annual average, ciliates formed 81.13%, 91.10%, heliozoans 0.20%, 3.49%, and testaceans 18.67%, 5.42% of total protozoan biomass; the protozoans, in turn, formed 49.77%, 49.48% of total zooplankton biomass in lake Biandantang and Lake Houhu, respectively. With respect to ciliates, naked oligotrichs and Peritrichida (mainly 40–80 m in size) dominated the abundance and Peritrichida dominated the biomass in Lake Biandantang, while Scuticociliatida (mainly smaller than 30 m ) dominated the abundance and tintinnids dominated the biomass in Lake Houhu.  相似文献   

20.

Aims

We assessed and quantified the cumulative impact of 20 years of biomass management on the nature and bioavailability of soil phosphorus (P) accumulated from antecedent fertiliser inputs.

Methods

Soil (0–2.5, 2.5–5, 5–10 cm) and plant samples were taken from replicate plots in a grassland field experiment maintained for 20 years under contrasting plant biomass regimen- biomass retained or removed after mowing. Analyses included dry matter production and P uptake, root biomass, total soil carbon (C), total nitrogen (N), total P, soil P fractionation, and 31P NMR spectroscopy.

Results

Contemporary plant production and P uptake were over 2-fold higher for the biomass retained compared with the biomass removed regimes. Soil C, total P, soluble and labile forms of inorganic and organic soil P were significantly higher under biomass retention than removal.

Conclusions

Reserves of soluble and labile inorganic P in soil were significantly depleted in response to continued long-term removal of P in plant biomass compared to retention. However, this was only sufficient to sustain plant production at half the level observed for the biomass retention after 20 years, which was partly attributed to limited mobilisation of organic P in response to P removal.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号