首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Experiments were conducted on anesthetized cats with microelectrode recording to study the synaptic responses that develop in the lumbar motoneurons on stimulation of the afferent fibers of groups II and III in the nerves of the ipsilateral and contralateral forelegs. Stimulation of these afferents evoked predominantly inhibitory postsynaptic potentials (IPSP) in the extensor motoneurons and excitatory postsynaptic potentials (EPSP) in the flexor motoneurons. A basically inhibitory change in the rhythmic background activity developed under the influence of descending impulsation. The duration of the total inhibition of "spontaneous" motoneuron activity corresponded to the duration of the inhibitory influences exerted by the forelimb flexor-reflex afferents (FRA) on the interneurons. The interaction of the descending and segmental PSP resulted in inhibition and facilitation of the segmental responses in the motoneurons. The ultimate result of this interaction was determined by the shifts in the membrane potential of the motoneuron and by the effects created in the interneurons.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 58–67, January–February, 1971.  相似文献   

2.
GABA and Prolonged Spinal Inhibition   总被引:2,自引:0,他引:2  
TWO explanations have been provided for the relatively long latency and prolonged (often exceeding 100 ms) inhibition of firing of spinal motoneurones which is caused by repetitive impulses produced by electrical or natural stimulation1–4 in muscle and cutaneous afferent fibres. This prolonged inhibitory process is exemplified by the reduction in the amplitude of monosynaptic excitatory synaptic potentials (EPSPs) and reflexes of extensor motoneurones by tetanic stimulation of group I afferents of flexor motoneurones2. In contrast with “direct” inhibition, the prolonged inhibition is not reduced by strychnine but is diminished by Picrotoxin4,6.  相似文献   

3.
The objective of this study was to assess changes in corticospinal excitability and spinal output following noninvasive transpinal and transcortical stimulation in humans. The size of the motor evoked potentials (MEPs), induced by transcranial magnetic stimulation (TMS) and recorded from the right plantar flexor and extensor muscles, was assessed following transcutaneous electric stimulation of the spine (tsESS) over the thoracolumbar region at conditioning-test (C-T) intervals that ranged from negative 50 to positive 50 ms. The size of the transpinal evoked potentials (TEPs), induced by tsESS and recorded from the right and left plantar flexor and extensor muscles, was assessed following TMS over the left primary motor cortex at 0.7 and at 1.1× MEP resting threshold at C-T intervals that ranged from negative 50 to positive 50 ms. The recruitment curves of MEPs and TEPs had a similar shape, and statistically significant differences between the sigmoid function parameters of MEPs and TEPs were not found. Anodal tsESS resulted in early MEP depression followed by long-latency MEP facilitation of both ankle plantar flexors and extensors. TEPs of ankle plantar flexors and extensors were increased regardless TMS intensity level. Subthreshold and suprathreshold TMS induced short-latency TEP facilitation that was larger in the TEPs ipsilateral to TMS. Noninvasive transpinal stimulation affected ipsilateral and contralateral actions of corticospinal neurons, while corticocortical and corticospinal descending volleys increased TEPs in both limbs. Transpinal and transcortical stimulation is a noninvasive neuromodulation method that alters corticospinal excitability and increases motor output of multiple spinal segments in humans.  相似文献   

4.
1. Using electromyogram recordings from the antennular muscles of intact animals and recordings from the antennular nerves of partially dissected preparations, the patterns of activity in specific antennular motoneurones have been described during antennular flicking and antennular withdrawal. 2. The slow extensor motoneurone A30S is active during flicking in addition to the phasic component of the antennular motor system (A30F, A31F and A32F). 3. The flexion phase of a flick is the result of a burst of variable duration and number of spikes within flexor motoneurones A31F and A32F. 4. The extension phase of a flick is the result of a burst of variable duration and number of spikes in extensor motoneurones A30F and A30S. 5. Extension-withdrawal and slow flexion-withdrawal reflexes, tonic flexion withdrawal and maintained flexion at the MS-DS joint usually result from activity in part of the tonic component of the antennular motor system:moto-neurones A30S, A31S and A32S. 6. Fast flexion-withdrawal reflexes result from a burst of spikes in motoneurone A31F-S which constitutes the phaso-tonic component of the antennular motor system. 7. During high-frequency activity (15-60/sec), reciprocity exists between the slow flexor motoneurones A31S and A32S and slow extensor motoneurone A30S.  相似文献   

5.
Repetitive stimulation of the locus coeruleus (up to 150 µA in strength) was accompanied by marked weakening of the inhibitory action of flexor reflex afferents and of the reciprocal inhibitory action on extensor motoneurons. Meanwhile stimulation of this sort had no significant effect on direct inhibition of flexor and extensor motoneurons, on the facilitatory action of flexor reflex afferents and the reciprocal inhibitory action on flexor motoneurons and also on dorsal root potentials. Intravenously injected pyrogallol had a similar action, but its effect was much weaker after spinalization of the animals or blocking of spinal cord conduction by cold. Enhancement of the monosynaptic reflex, which also was observed after injection of pyrogallol, was characterized by different temporal parameters; the intensity of this effect was unaffected both by spinalization and by cold block. These data, and also the results of experiments with partial divisions of the spinal cord, suggest that the effects of stimulation of the locus coeruleus are the result of activity of a descending coerulo-spinal tract, running in the ventral quadrant of the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 39–47, January–February, 1981.  相似文献   

6.
1. The effects of altering sensory input on the motoneuronal activity underlying antennular flicking have been tested. 2. Removal of the short segments of the outer flagellum results in a reduction of the number of spikes/burst in the fast flexor motoneurones A31F and A32F. 3. During a flick the delay between the burst in motoneurone A31F and the burst in motoneurone A32F is insensitive to alteration of sensory input. 4. Sensory feedback from the flexion phase of a flick is necessary for the activation of either extensor motoneurone. Evidence is presented to suggest that this feedback is primarily from joint-movement receptors at the MS-DS and DS-OF joints. 5. The results are incorporated into a model in which the patterns of flexor activity result from some specified properties of three components: a trigger system, a follower system, and the spike initiating zone of the flexor motoneurones. The trigger system determines when a flick will occur. The follower system determines the number of flexor spikes during a flick. Properties of the spike initiating zone determine the spike frequency and the timing between bursts in the flexor motoneurones. Extensor activity in the model is reflexively elicited by feedback from phasic, unidirectional receptors sensitive to joint flexion. 6. The functional significance of reflex control of extensor activity is discussed in relation to the form and proposed function of antennular flicking. It is suggested that this form of control is adapted to the function of antennular flicking because flexion at the MS-DS joint is not always necessary for the fulfilment of the fuction of a flick.  相似文献   

7.
Experiments on cats showed that electrical stimulation of the locus coeruleus leads to diminution of the inhibitory action of flexor reflex afferents (FRA) on the extensor monosynaptic reflex and to a decrease in amplitude of the IPSP evoked by FRA in extensor motoneurons. Injection of microdoses of aspartic acid and chlorpromazine into the locus coeruleus depresses the inhibitory effects of FRA, whereas injections of procaine and noradrenalin potentiate the inhibitory action of FRA. Data are given on the character of the descending influence of the locus coeruleus on different groups of spinal interneurons. It is concluded that depression of the inhibitory action of FRA is effected at the level of the final inhibitory interneurons of the "FRA system."A. A. Bogolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 362–374, May–June, 1984.  相似文献   

8.
Electrical activity of flexor and extensor alpha-motoneurons of the lumbar segments of cat's spinal cord as recorded intracellularly during electric stimulation of afferents of the contralateral posterior limb. Contralateral postsynaptic potentials (PSP) were shown to be evoked by activation of cutaneous and high-threshold muscle afferents. The high-threshold afferents of various muscle nerves participate to varying degrees in the generation of contralateral PSP. Contralateral inhibitory postsynaptic potentials (IPSP) were recorded in both flexor and extensor motoneurons along with contralateral excitatory postsynaptic potentials (EPSP). There are no fundamental differences in their distribution between flexor and extensor neurons. Inhibitory influences as a rule are predominant in both during the first 20 msec, and EPSP are predominant in the interval between 20 and 100 msec. The balance of excitatory and inhibitory pathway activity was found to be not as stable as that of the homolateral pathways.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 418–425, July–August, 1971.  相似文献   

9.
We describe the kinematics and performance of the natural jump in the weevil Orchestes fagi (Fabricius, 1801) (Coleoptera: Curculionidae) and its jumping apparatus with underlying anatomy and functional morphology. In weevils, jumping is performed by the hind legs and involves the extension of the hind tibia. The principal structural elements of the jumping apparatus are (1) the femoro-tibial joint, (2) the metafemoral extensor tendon, (3) the extensor ligament, (4) the flexor ligament, (5) the tibial flexor sclerite and (6) the extensor and flexor muscles. The kinematic parameters of the jump (from minimum to maximum) are 530–1965 m s?2 (acceleration), 0.7–2.0 m s?1 (velocity), 1.5–3.0 ms (time to take-off), 0.3–4.4 μJ (kinetic energy) and 54–200 (g-force). The specific joint power as calculated for the femoro-tibial joint during the jumping movement is 0.97 W g?1. The full extension of the hind tibia during the jump was reached within up to 1.8–2.5 ms. The kinematic parameters, the specific joint power and the time for the full extension of the hind tibia suggest that the jump is performed via a catapult mechanism with an input of elastic strain energy. A resilin-bearing elastic extensor ligament that connects the extensor tendon and the tibial base is considered to be the structure that accumulates the elastic strain energy for the jump. According to our functional model, the extensor ligament is loaded by the contraction of the extensor muscle, while the co-contraction of the antagonistic extensor and flexor muscles prevents the early extension of the tibia. This is attributable to the leverage factors of the femoro-tibial joint providing a mechanical advantage for the flexor muscles over the extensor muscles in the fully flexed position. The release of the accumulated energy is performed by the rapid relaxation of the flexor muscles resulting in the fast extension of the hind tibia propelling the body into air.  相似文献   

10.
1. The reflex activity elicited by movement of the mero-carpopodite (M-C) joint in the cheliped of the crayfish Astacus leptodactylus is investigated and the role of the different proprioceptors (chordotonal and myochordotonal organs) separately studied. 2. The reflex discharge involves mainly the tonic motoneurones of the extensor (E), the flexor (F) and the accessory flexor (AF) muscles. 3. M-C joint posture is also regulated by the cuticular stress detector (CSD2) afferents: they increase mainly the F discharge and secondarily the AF command. 4. The activity of the motor axons supplying the muscles of the meropodite can be also influenced by a variety of natural stimuli applied to other appendages. The effect usually produced is a general flexion reaction which is characterized by a reciprocity between E and F involving both central and peripheral mechanisms. 5. The AF muscle is innervated by two antagonistic motoneurones, an excitatory neurone functionally linked in its discharge with one of the four excitors supplying F and an inhibitory motoneurone, common with E. The resulting competitive effect between these two neurones has been recorded intracellularly in AF muscle fibres. 6. The role of the myochordotonal organ (MCO) in the crayfish is discussed. In particular the modulation of the AF command in relation to the discharges of the motor nerves to the main muscle E and F is studied.  相似文献   

11.
1. The trochanteral hair-plate afferents in the metathoracic leg of the cockroach, Periplaneta americana, were stimulated electrically and at the same time intracellular recordings were made from either motoneurones, interneurones or afferent terminals within the methathoracic ganglion. 2. Activity in the hair-plate afferents evoked short latency excitatory postsynaptic potentials (EPSPs) in femur flexor motoneurones. The latency of the IPSPs was on average 1-8 ms longer than the latency ofthe EPSPs. 3. Intracellular recordings from terminal branches of the hair-plate afferents showed that the delay between the peak of the afferent terminal spike and the beginning of the EPSPs is about 0.4 ms. This finding, together with the observations that the amplitude of the EPSPs is increased by the passage of hyperpolarizing current and decreased following high-frequency stimulation, indicates that the EPpSPs are evoked via-monosynaptic chemical synaptic junctions. 4. The observations of the long latency of the IPSPs, the need for a number of afferents to be simultaneously acive for them to be evoked and the occasional variability in latency, all indicate that the IPSPs are evoked via a disynaptic pathway...  相似文献   

12.
The effect of octopamine on the fast extensor and the flexor tibiae motor neurones in the locust (Schistocerca gregaria) metathoracic ganglion, and also on synaptic transmission from the fast extensor to the flexor motor neurones, was examined. Bath application or ionophoresis of octopamine depolarized and increased the excitability of the flexor tibiae motor neurones. 1 mM octopamine reduced the amplitude of the fast extensor-evoked EPSP in the slow but not the fast flexor motor neurones, whereas 10 mM octopamine could reduce the EPSP amplitude in both. Octopamine broadened the fast extensor action potential and reduced the amplitude of the afterhyperpolarization, the modulation requiring feedback resulting from movement of the tibia. Octopamine also increased the frequency of synaptic inputs onto the tibial motor neurones, and could cause rhythmic activity in the flexor motor neurones, and reciprocal activity in flexor and extensor motor neurones. Octopamine also increased the frequency of spontaneous spiking in the octopaminergic dorsal unpaired median neurones. Repetitive stimulation of unidentified dorsal unpaired median neurones could mimic some of the effects of octopamine. However, no synaptic connections were found between dorsal unpaired median neurones and the tibial motor neurones. The diverse effects of octopamine support its role in mediating arousal.  相似文献   

13.
Microinjections of aspartic acid and chlorpromazine into the region of the locus coeruleus, which strengthen spontaneous unit activity in that structure, in decerebellate cats anesthetized with chloralose, led to depression of the inhibitory influence of flexor reflex afferents on extensor discharges, but did not change the facilitatory action of these afferents on flexor monosynaptic discharges and had no effect on recurrent inhibition of extensor discharges or reduced it. Microinjection of noradrenalin into this region, which depresses spontaneous unit activity in the locus coeruleus, or of procaine, which blocks action potential generation in neurons, led to potentiation of the inhibitory action of flexor reflex afferents on extensor discharges and to strengthening of recurrent inhibition, but did not affect the facilitatory action of these afferents on flexor discharges. The role of tonic descending influences of the locus coeruleus in the control of spinal inhibition evoked by flexor reflex afferents is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 247–256, May–June, 1981.  相似文献   

14.
IntroductionWe investigated the extent to which the corticospinal inputs delivered to Ia inhibitory interneurons influence the strength of disynaptic reciprocal Ia inhibition.MethodsSeventeen healthy subjects participated in this study. The degree of reciprocal Ia inhibition was determined via short-latency (condition-test interval: 1–3 ms) suppression of Sol H-reflex by conditioning stimulation of common peroneal nerve. The effect of corticospinal descending inputs on Ia inhibitory interneurons was assessed by evaluating the conditioning effect of transcranial magnetic stimulation (TMS) on the Sol H-reflex. Then, we determined the relationship between the degree of reciprocal Ia inhibition and the conditioning effect of TMS on the Sol H-reflex.ResultWe found that the degree of reciprocal Ia inhibition and the extent of change in the amplitude of the TMS-conditioned H-reflex, which was measured from short latency facilitation to inhibition, displayed a strong correlation (r = 0.76, p < 0.01) in the resting conditions.ConclusionThe extent of reciprocal Ia inhibition is affected by the corticospinal descending inputs delivered to Ia inhibitory interneurons, which might explain the inter-individual variations in reciprocal Ia inhibition.  相似文献   

15.
Effects of repetitive stimulation of the locus coeruleus on spinal responses to activation of cortico-, reticulo-, and vestibulospinal tracts were studied in decerebellate cats anesthetized with chloralose. Descending influences of these structures were assessed from changes in amplitude of extensor and flexor monosynaptic discharges or from the magnitude of postsynaptic potentials recorded from the corresponding motoneurons. Stimulation of the motor cortex or modullary reticular formation as a rule evoked two-component inhibitory responses in extensor motoneurons and excitatory-inhibitory responses in flexor motoneurons. Stimulation of locus coeruleus effectively depressed the amplitude of the late component and, to a lesser degree, that of the early component of inhibition arising after stimulation of the cerebral cortex or reticular formation. During stimulation of the locus coeruleus no marked changes were found in inhibitory responses evoked by vestibulospinal influences in flexor motoneurons, and also in excitatory responses arising after stimulation of the above-mentioned descending pathways in both groups of motoneurons.  相似文献   

16.
The pattern of innervation of the hindlimb flexor muscle surface of the mature axolotl by segmental nerves 16 and 17 (i.e., SN16 and 17) is approximately constant, if there is no innervation by nerve 18. If the proximal flexor muscle surface is divided into six equal sectors, it is found that sector 1 is only innervated by SN17, sector 2 by both SN16 and 17, sectors 3 and 4 by SN16, and sectors 5 and 6 by both SN16 and 17. In tadpole axolotls, when the flexor hindlimb muscle is about 1.5 mm long, muscle cells in all sectors can be found which were innervated by both SN16 and 17. During subsequent development the incorrect synaptic contacts are lost, and by the time the flexor muscle has reached a length of 5.5 mm the mature pattern of innervation is attained. At later stages of development a further loss of synapses is observed which appears to be unassociated with any change in the pattern of innervation of the flexor hindlimb muscle. These observations suggest the hypothesis that very early during development segmental motoneurones make incorrect connections on muscle cells, with the terminals of foreign motoneurones regressing in favour of the terminals of correct motoneurones.  相似文献   

17.
LSD was more effective in facilitating the flexor reflex in the chronic than in the acute spinal dog. On the other hand, 1-tryptophan produced a significant facilitation of the flexor reflex in the acute spinal dog but not in the chronic spinal dog. These data are consistent with the hypothesis that there are long descending tryptaminergic axons which have the capacity of converting tryptophan to tryptamine and releasing it in the vicinity of post-synaptic facilitatory receptors which degenerate in the chronic spinal dog.  相似文献   

18.
1. The influence of electrical stimulation of the nucleus raphes magnus (RM) on spinal segmental systems were examined. 2. RM stimulation produced an initial increase and a subsequent suppression of the amplitude of both fiextor and extensor lumbar monosynaptic reflex potentials (MSRs). 3. Intracellular recordings were made from alpha-motoneurons of the common peroneal nerve (flexor) and the tibial nerve (extensor). RM stimulation evoked postsynaptic potentials with a time course similar to that of MSR facilitation. 4. RM stimulation inhibited the aggregate excitatory synaptic potential (EPSP) evoked by stimulation of group I afferent fibers without apparent changes in the motoneuronal membrane potential. 5. These data suggest that the RM-evoked biphasic effect on MSR consists of early facilitation due to EPSP, and late inhibition possibly due to presynaptic inhibition of group I afferent fibers.  相似文献   

19.
From what we know at present with respect to the neural control of walking, it can be concluded that an optimal biologically inspired robot could have the following features. The limbs should include several joints in which position changes can be obtained by actuators across the joints. The control of mono- and biarticular actuators should occur at least at three levels: one at direct control of the actuators (equivalent to motoneuron level), the second at indirect control acting at a level which controls whole limb movement (flexion or extension) and the third at a still higher level controlling the interlimb coordination. The limb level circuits should be able to produce alternating flexion and extension movements in the limb by means of coupled oscillator flexor and extensor parts which are mutually inhibitory. The interlimb control level should be able to command the various limb control centers. All three control levels should have some basic feedback circuits but the most essential one is needed at the limb control level and concerns the decision to either flex or extend a given limb. The decision to activate the extensor part of the limb oscillator has to be based on feedback signalling the onset of loading of the limb involved. This should be signalled by means of load sensors in the limb. The decision to activate the flexor part of the limb oscillator has to depend on various types of feedback. The most important requirement is that flexion should only occur when the limb concerned is no longer loaded above a given threshold. The rule for the initiation of limb flexion can be made more robust by adding the requirement that position at the base of the limb ("hip") should be within a normal end of stance phase range. Hence, human locomotion is thought to use a number of principles which simplify control, just as in other species such as the cat. It is suggested that cat and human locomotion are good models to learn from when designing efficient walking robots.  相似文献   

20.
The coupling between the firings of 33 pairs of motor units tested in the extensor carpi radialis muscles was evaluated by cross-correlation analysis and compared during isometric wrist extension and hand clenching. A slightly greater amount of synchrony was observed during hand clenching (0.042 &#45 0.024 vs 0.035 &#45 0.017 synchronous impulses per trigger). This trend did not reach however the level of significance and the changes were actually found to be heterogeneous: in 15 out of the 33 pairs tested, synchronous activity with a narrow coupling (4.6 &#45 2.4 ms) consistent with short-term synchrony was greater during hand clenching whereas in nine other pairs, synchronous activity with a broader dispersion (9.0 &#45 4.5 ms) was reduced. These opposite changes could not be explained in terms of changes in the firing pattern of the motor units and were found instead to correlate with the motor units' biomechanical properties. Motor units with high recruitment thresholds and fast rising twitches showed predominantly an increase in synchrony; whereas the motor unit pairs with low recruitment thresholds and slow twitches showed either an increase or a decrease. The enhanced short-term synchrony suggests that common inputs distributed to motoneurones of all types were more effective during hand clenching whereas the decrease in weakly coupled synchronous activity suggests that other inputs synchronized at a pre-synaptic level and distributed more specifically to motor units recruited at low force levels were less effective. The possible origins of the inputs reflected in the dual changes are discussed in terms of the supra-spinal and peripheral pathways controlling the wrist extensor motoneurones during wrist extension and hand clenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号