首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies of Anopheles gambiae, the principal mosquito vector of malaria in Africa, suggested that the eastern Rift Valley and its surrounding areas act as a barrier to gene flow. To quantify the unique effect of these areas on gene flow, we measured genetic variation within and between populations from each side of the Rift. Low differentiation was measured between populations on each side of the Rift (mean FST < 0.008, mean RST < 0.002). However, high differentiation was measured across the Rift (mean FST = 0.104; mean RST = 0.032). Genetic diversity within populations was lower in eastern populations, suggesting that the effective population sizes (Ne) of these populations were lower than those of western populations. We partitioned the overall differentiation across the Rift into three factors: variation in Ne between populations contributed 7-20%; distance contributed 10-30%, and the remainder, corresponding to the unique effect of the Rift was 50-80%. The Rift's effect was highly significant based on FST. The greater sensitivity of FST in measuring differentiation indicated that drift and not mutation generated the differences between populations. Restricted gene exchange across several hundred kilometers on the face of intense human transportation implies that active mosquito dispersal is the major form of migration, and that migration is a multistep process, where step length is relatively short.  相似文献   

2.
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution.  相似文献   

3.
Population structure parameters commonly used for diploid species are reexamined for the particular case of tetrasomic inheritance (autotetraploid species). Recurrence equations that describe the evolution of identity probabilities for neutral genes in an "island model" of population structure are derived assuming tetrasomic inheritance. The expected equilibrium value of FST is computed. In contrast to diploids, the correlation of genes between individuals within populations with respect to genes between populations (FST) may vary among loci due to the particular segregation patterns expected under tetrasomic inheritance and is consequently inappropriate for estimating demographic parameters in such populations. We thus define a new parameter (rho) and derive its relationship with Nm. This relationship is shown to be independent from both the selfing rate and the proportion of double reduction. Finally, the statistical procedure required to evaluate these parameters using data on gene frequencies distribution among autotetraploid populations is developed.  相似文献   

4.
Eryngium alpinum L. is an endangered species found across the European Alps. In order to obtain base-line data for the conservation of this species, we investigated levels of genetic diversity within and among 14 populations from the French Alps. We used the amplified fragment length polymorphism (AFLP) technique with three primer pairs and scored a total of 62 unambiguous, polymorphic markers in 327 individuals. Because AFLP markers are dominant, within-population genetic structure (e.g. FIS) could not be assessed. Analyses based either on the assumption of random-mating or on complete selfing lead to very similar results. Diversity levels within populations were relatively high (mean Nei's expected heterozygosity = 0.198; mean Shannon index = 0.283), and a positive correlation was detected between both genetic diversity measurements and population size (Spearman rank correlation: P = 0. 005 and P = 0.002, respectively). Moreover, FST values and exact tests of differentiation revealed high differentiation among populations (mean pairwise FST = 0.40), which appeared to be independent of geographical distance (nonsignificant Mantel test). Founder events during postglacial colonizations and/or bottlenecks are proposed to explain this high but random genetic differentiation. By contrast, we detected a pattern of isolation by distance within populations and valleys. Predominant local gene flow by pollen or seed is probably responsible for this pattern. Concerning the management of E. alpinum, the high genetic differentiation leads us to recommend the conservation of a maximum number of populations. This study demonstrates that AFLP markers enable a quick and reliable assessment of intraspecific genetic variability in conservation genetics.  相似文献   

5.
FST was estimated for 67 communities and 6 small towns of Kostroma province. The mean FST value for rural and urban populations was (0.83 +/- 0.08).10(-3) and (0.29 +/- 0.07).10(-3), respectively. The connection between FST values and the load of autosomal-recessive disorders was established; the coefficient of correlation (by Chuprov) was 0.34 (chi 2 = 8.45; P less than 0.05). The matrices of genetic distances for two groups of districts of Kostroma province, based on surnames frequencies, were calculated. Dendrogramms were constructed using genetic distances, which reflect the degree of genetical similarity of the populations. The conclusion drawn from the analysis of these dendrogramms is that there is distinct isolation by distance in populations of Kostroma province. It is shown that genetical subdivision of populations is dependent on geographical and some other factors and on the load of autosomal-recessive pathology in the population.  相似文献   

6.
Greater prairie-chickens (Tympanuchus cupido pinnatus) were once found throughout the tallgrass prairie of midwestern North America but over the last century these prairies have been lost or fragmented by human land use. As a consequence, many current populations of prairie-chickens have become isolated and small. This fragmentation of populations is expected to lead to reductions in genetic variation as a result of random genetic drift and a decrease in gene flow. As expected, we found that genetic variation at both microsatellite DNA and mitochondrial DNA (mtDNA) markers was reduced in smaller populations, particularly in Wisconsin. There was relatively little range-wide geographical structure (FST) when we examined mtDNA haplotypes but there was a significant positive relationship between genetic (FST) and geographical distance (isolation by distance). In contrast, microsatellite DNA loci revealed significant geographical structure (FST) and a weak effect of isolation by distance throughout the range. These patterns were much stronger when populations with reduced levels of genetic variability (Wisconsin) were removed from the analyses. This suggests that the effects of genetic drift were stronger than gene flow at microsatellite loci, whereas these forces were in range-wide equilibrium at mtDNA markers. These differences between the two molecular markers may be explained by a larger effective population size (Ne) for mtDNA, which is expected in species such as prairie-chickens that have female-biased dispersal and high levels of polygyny. Our results suggest that historic populations of prairie-chickens were once interconnected by gene flow but current populations are now isolated. Thus, maintaining gene flow may be important for the long-term persistence of prairie-chicken populations.  相似文献   

7.
Genetic diversity and differentiation of Kermode bear populations   总被引:5,自引:0,他引:5  
The Kermode bear is a white phase of the North American black bear that occurs in low to moderate frequency on British Columbia's mid-coast. To investigate the genetic uniqueness of populations containing the white phase, and to ascertain levels of gene flow among populations, we surveyed 10 highly polymorphic microsatellite loci, assayed from trapped bear hairs. A total of 216 unique bear genotypes, 18 of which were white, was sampled among 12 localities. Island populations, where Kermodes are most frequent, show approximately 4% less diversity than mainland populations, and the island richest in white bears (Gribbell) exhibited substantial genetic isolation, with a mean pairwise FST of 0.14 with other localities. Among all localities, FST for the molecular variant underlying the coat-colour difference (A893G) was 0.223, which falls into the 95th percentile of the distribution of FST values among microsatellite alleles, suggestive of greater differentiation for coat colour than expected under neutrality. Control-region sequences confirm that Kermode bears are part of a coastal or western lineage of black bears whose existence predates the Wisconsin glaciation, but microsatellite variation gave no evidence of past population expansion. We conclude that Kermodism was established and is maintained in populations by a combination of genetic isolation and somewhat reduced population sizes in insular habitat, with the possible contribution of selective pressure and/or nonrandom mating.  相似文献   

8.
The neutral island model forms the basis for several estimation models that relate patterns of genetic structure to microevolutionary processes. Estimates of gene flow are often based on this model and may be biased when the model's assumptions are violated. An appropriate test for violations is to compare FST scores for individual loci to a null distribution based on the average FST taken over multiple loci. A parametric bootstrap method is described here based on Wright's beta-distribution to generate null distributions of FST for each locus. These null distributions account for error introduced by sampling populations, individuals and loci, and also biological sources of error, including variable alleles/locus and inbreeding. Confidence limits can be obtained directly from these distributions. Significant deviations from the island model may be the result of selection, deviations from the island model's migration pattern, nonequilibrium conditions, or other deviations from island-model assumptions. Only strong biases are likely to be detected because of the inherently large sampling variation of FST. Nevertheless, a coefficient, Nb, describing bias in the spread of the beta-distribution in units comparable to the gene flow parameter, Nm, can be obtained for each locus. In samples from populations of the butterfly Coenonympha tullia, the loci Idh-1, Mdh-1, Pgi and Pgm showed significantly lower FST than expected.  相似文献   

9.
通过分析37个SSR座位在琼海与三亚两普通野生稻(Oryza rufipogon)居群中的遗传变异, 结果表明, SSR座位在三亚普通野生稻居群中的变异高于其在琼海普通野生稻居群中的变异。根据遗传相似性和遗传距离公式得到琼海与三亚普通野生稻居群间的遗传相似性为0.6385, 遗传距离为0.4486 cM。Wright的FST检验结果表明, 这37个SSR座位在两居群之间存在着中等程度的遗传分化, FST=0.3909。此分化结果主要是由两居群间弱的基因漂移导致的(Nm=0.3895)。  相似文献   

10.
We examined the genetic structure and phylogeography of populations of the stonefly Peltoperla tarteri in the Southern Appalachians to determine the extent and likely mechanism for dispersal of this stream insect. A 454-base-pair (bp) portion of the mitochondrial control region was sequenced from a minimum of 20 individuals from eight populations. Pairwise FST and exact tests showed high levels of differentiation among almost all populations except those on the same stream. amova analysis detected significant genetic differentiation between streams within drainages (phi(SD) = 0.14, P < 0.001), and there was a slight positive correlation between aquatic distance and genetic distance (r = 0.295, P = 0.03). According to nested clade analysis, the present day pattern of genetic variation in P. tarteri is the result of a historical range expansion coupled with restricted gene flow with isolation by distance. Together, these analyses suggest that adult dispersal is limited and that movement by larvae is the primary dispersal mechanism for P. tarteri.  相似文献   

11.
Twenty-one populations of the checkerspot butterfly, Euphydryas editha, and ten populations of Euphydryas chalcedona were sampled for genetic variation at eight polymorphic enzyme loci. Both species possessed loci that were highly variable from population to population and loci that were virtually identical across all populations sampled. Our data indicate that the neutrality hypothesis is untenable for the loci studied, and therefore selection is indicated as the major factor responsible for producing these patterns. Thorough ecological work allowed gene flow to be ruled out (in almost all instances) as a factor maintaining similar gene frequencies across populations. The Lewontin-Krakauer test indicated magnitudes of heterogeneity among standardized variances of gene frequencies inconsistent with the neutrality hypothesis. The question of whether or not to correct this statistic for sample size is discussed. Observed equitability of gene frequencies of multiple allelic loci was found to be greater than that predicted under the neutrality hypothesis. Genetic differentiation persisting through two generations was found between the one pair of populations known to exchange significant numbers of individuals per generation. Two matrices of genetic distance between populations, based on the eight loci sampled, were found to be significantly correlated with a matrix of environmental distance, based on measures of fourteen environmental parameters. Correlations between gene frequencies and environmental parameters, results of multiple regression analysis, and results of principle component analysis showed strong patterns of association and of "explained" variation. The correlation analyses suggest which factors might be further investigated as proximate selective agents.  相似文献   

12.
Allele frequencies from seven polymorphic red cell antigen loci (ABO, Rh, MN, S, P, Duffy, and Diego) were examined in 144 Native American populations. Mean genetic distances (Nei's D) and the fixation index FST are approximately equal for the North and South American samples but are reduced in the Central American geographic area. The relationship between genetic distance and geographic distance differs markedly across geographic areas. The correlation between geographic distance and genetic distance for the North and Central American data is twice as large as that observed for the South American samples. This geographic difference is confirmed in spatial autocorrelation analyses; no geographic structure is apparent in the South American data but geographic structure is prominent in North and Central American samples. These results confirm earlier observations regarding differences between North and South American gene frequency patterns.  相似文献   

13.
Kitada S  Hayashi T  Kishino H 《Genetics》2000,156(4):2063-2079
We developed an empirical Bayes procedure to estimate genetic distances between populations using allele frequencies. This procedure makes it possible to describe the skewness of the genetic distance while taking full account of the uncertainty of the sample allele frequencies. Dirichlet priors of the allele frequencies are specified, and the posterior distributions of the various composite parameters are obtained by Monte Carlo simulation. To avoid overdependence on subjective priors, we adopt a hierarchical model and estimate hyperparameters by maximizing the joint marginal-likelihood function. Taking advantage of the empirical Bayesian procedure, we extend the method to estimate the effective population size using temporal changes in allele frequencies. The method is applied to data sets on red sea bream, herring, northern pike, and ayu broodstock. It is shown that overdispersion overestimates the genetic distance and underestimates the effective population size, if it is not taken into account during the analysis. The joint marginal-likelihood function also estimates the rate of gene flow into island populations.  相似文献   

14.
We investigate the variation in quantitative and molecular traits in the freshwater snail Galba truncatula, from permanent and temporary water habitats. Using a common garden experiment, we measured 20 quantitative traits and molecular variation using seven microsatellites in 17 populations belonging to these two habitats. We estimated trait means in each habitat. We also estimated the distributions of overall genetic quantitative variation (QST), and of molecular variation (FST), within and between habitats. Overall, we observed a lack of association between molecular and quantitative variance. Among habitats, we found QST>FST, an indication of selection for different optima. Individuals from temporary water habitat matured older, at a larger size and were less fecund than individuals from permanent water habitat. We discuss these findings in the light of several theories for life-history traits evolution.  相似文献   

15.
Genetic variation in postfire aspen seedlings in yellowstone national park   总被引:2,自引:0,他引:2  
A rare episode of regeneration of aspen (Populus tremuloides Michx.) by seeds occurred in Yellowstone National Park (YNP), Wyoming, USA, following extensive fires that occurred in 1988. In 1997, we sampled 410 aspen seedlings from 23 local populations distributed widely across YNP to determine how genetic diversity varies with elevation, substrate, plant competition, ungulate browsing, and geographical location. We employed 132 randomly amplified polymorphic DNA (RAPD) markers based on six primers to show genetic relationships within and among the postfire aspen seedling populations. Measures of genetic variation, including estimates of percentage polymorphic loci, expected heterozygosity, and Nei's FST, indicated that most of the variation occurred within rather than among local populations. There was no indication of geographical differentiation among sampled populations based on hierarchal estimates of Nei's FST, neighbour-joining, or correlations between genetic distance and geographical distance. Even genetically distant populations shared nearly 90% of the same markers. Within plots, the amount of genetic variation decreased slightly in response to increased percentage vegetative cover, mean seedling basal diameter, and mean seedling height. Geological substrate, density of lodgepole pine (Pinus contorta var. latifolia Dougl.) seedlings, browsing intensity, and elevation were not significantly related to levels of genetic variation within the seedling plots. These data suggest that genetic variation and geographical structure among seedling populations may occur over time as the transition from seedling-dominated stands to clone-dominated stands occurs.  相似文献   

16.
B. K. Epperson 《Genetics》1993,133(3):711-727
The geographic distribution of genetic variation is an important theoretical and experimental component of population genetics. Previous characterizations of genetic structure of populations have used measures of spatial variance and spatial correlations. Yet a full understanding of the causes and consequences of spatial structure requires complete characterization of the underlying space-time system. This paper examines important interactions between processes and spatial structure in systems of subpopulations with migration and drift, by analyzing correlations of gene frequencies over space and time. We develop methods for studying important features of the complete set of space-time correlations of gene frequencies for the first time in population genetics. These methods also provide a new alternative for studying the purely spatial correlations and the variance, for models with general spatial dimensionalities and migration patterns. These results are obtained by employing theorems, previously unused in population genetics, for space-time autoregressive (STAR) stochastic spatial time series. We include results on systems with subpopulation interactions that have time delay lags (temporal orders) greater than one. We use the space-time correlation structure to develop novel estimators for migration rates that are based on space-time data (samples collected over space and time) rather than on purely spatial data, for real systems. We examine the space-time and spatial correlations for some specific stepping stone migration models. One focus is on the effects of anisotropic migration rates. Partial space-time correlation coefficients can be used for identifying migration patterns. Using STAR models, the spatial, space-time, and partial space-time correlations together provide a framework with an unprecedented level of detail for characterizing, predicting and contrasting space-time theoretical distributions of gene frequencies, and for identifying features such as the pattern of migration and estimating migration rates in experimental studies of genetic variation over space and time.  相似文献   

17.
Allozyme and mitochondrial gene diversities were estimated in house flies, Musca domestica L. (Diptera: Muscidae), sampled in Iowa, USA; Berkshire, England; and Kudang, The Gambia. Comparison of genomic allele frequencies among the three populations indicated small differences between the English and American samples but very large distances between English or American and the African. The FST statistic was 0.65 +/- 0.09 for allozymes. Pairwise FST was 0.14 between the English and the American samples; FST was 0.65 between the African population and the English and American. Mitochondrial variation in the same flies was assessed by SSCP methods which revealed nine haplotypes, none of which were shared in common. FST was 0.637 for the mitochondrial haplotypes. The research indicates greatly restricted gene flow between Africa and the temperate regions.  相似文献   

18.
The isolation-by-distance model predicts that genetic similarity between populations will decrease exponentially as the geographic distance between them increases, because of the limiting effect of geographic distance on rates of gene flow. Many studies of human populations have applied the isolation-by-distance model to genetic variation between local populations in a limited geographic area, but few have done so on a global level, and these few used different models and analytical methods. I assess genetic variation between human populations across the world using data on red blood cell polymorphisms, microsatellite DNA markers, and craniometric traits. The isolation-by-distance model provides an excellent fit to average levels of genetic similarity within geographic distance classes for all three data sets, and the rate of distance decay is the same in all three. These results suggest that a common pattern of global gene flow mediated by geographic distance is detectable in diverse genetic and morphological data. An alternative explanation is that the correspondence between genetic similarity and geographic distance reflects the history of dispersal of the human species out of Africa.  相似文献   

19.
An important characteristic of the genetic structure of populations, random inbreeding (interpopulation variation), was evaluated on the basis of quasi-genetic markers (surnames). The following methodological issues are considered: estimation of random inbreeding using the coefficient of isonymy fr in a subdivided population; a comparison of inbreeding levels calculated on the basis of surname frequencies using fr and Wright's FST; a comparison of inbreeding estimates obtained on the basis of surnames and genetic markers; inbreeding variation in populations of the same hierarchical rank; and planning of genetic studies of a subdivided population. The population of Adygs (an indigenous ethnic group of Northern Caucasus) was examined as a model subdivided population. The population system of Adygs is hierarchical. Parameters of random inbreeding were examined at each level of the system "ethnic group==>tribe==>geographic group of auls==>aul." Frequencies of surnames were collected subtotally. Data on frequencies of 1340 surnames in 61 auls representing all Adyg tribes were analyzed. In total, 60,000 people were examined. The inbreeding estimates obtained on the basis of Wright's FST and the coefficient of isonymy fr virtually coincided: for Adygs in general, FST x 10(2) = 2.13 and fr x 10(2) = 2.09. At the same time, the inbreeding level exhibited marked differences among tribes: in Shapsugs, these differences were an order of magnitude higher than in Kabardins (fr x 10(2) = 2.53 and 0.25, respectively). The inbreeding estimates for auls differed by two orders of magnitudes: fr x 10(2) = 0.07 and fr x 10(2) = 7.88. An analysis of ten auls yielded fully coinciding inbreeding estimates based on quasi-genetic (fr x 10(2) = 0.60) and classical (FST x 10(2) = 0.69) gene markers. Computer maps of surname distributions in Adygs (1340 maps) were constructed for the first time ever. Based on these maps, the map of random inbreeding in the Adyg population was obtained.  相似文献   

20.
We have investigated the genetic population structure within and the genetic differentiation between local populations of the large blue butterfly Maculinea alcon throughout the Jutland peninsula. Samples were collected as eggs on foodplants (Gentiana pneumonanthe), and reared to 4th instar caterpillars in the laboratory. A significant excess of homozygotes was found for all the investigated allozyme loci in most of the populations. A North-South cline was observed for the allele frequencies at some of the loci and for several linkage groups. Because some of the allele frequency clines were parallel to clines in adult morphological variation, we interpret our results as evidence for the co-existence of at least two gene pools within the Danish Maculinea alcon populations. Multilocus electrophoretic data revealed highly positive but variable FST values, which under this scenario would reflect varying frequencies of the Maculinea gene pools across the local populations. The significantly positive FIS values indicate that these gene pools are at least partly reproductively isolated (Wahlund effect). The co-occurrence of several Maculinea alcon gene pools on many local sites in Jutland is of great importance for conservation of the fragmented Maculinea populations. Our results show that there is probably more Maculinea biodiversity to conserve than was previously thought, and suggests that extant populations are more fragmented and vulnerable than counts of flying adults or eggs on foodplants indicate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号