首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OmpA is a major protein of the outer membrane of Escherichia coli. It is made as a larger precursor, pro-OmpA, which requires a membrane potential for processing. We now show that pro-OmpA accumulates in the cytoplasm of cells treated with carbonyl cyanide m-chlorophenylhydrazone, an uncouple which lowers the membrane potential. Upon restoration of the potential, this pro-OmpA is secreted, processed, and assembled into the outer membrane. Pro-OmpA made in vitro is also recovered with the postribosomal supernatant. It is efficiently processed to OmpA by liposomes which have bacterial leader peptidase that is exclusively internally oriented. These experiments show that: (i) the insertion of pro-OmpA into the plasma membrane is not coupled to its synthesis; (ii) insertion is promoted by the transmembrane electrochemical potential; (iii) pro-OmpA can cross a bilayer spontaneously; and (iv) pro-OmpA is processed by the same leader peptidase which converts M13 procoat to coat.  相似文献   

2.
Processing of M13 procoat protein to transmembrane coat protein by dog pancreas microsomes is stimulated by a component of rabbit reticulocyte lysate and ATP. We asked whether this ATP-dependent reaction, involved in membrane assembly of procoat protein in the eukaryotic system, is related to the membrane potential dependent reaction observed for the membrane assembly of procoat protein in E. coli. Specifically, we asked if a mutant procoat protein which had been previously shown to be independent of the membrane potential with respect to its assembly in E. coli (M13am8H1R1 procoat protein) shows a stimulation by reticulocyte lysate and ATP in its assembly into microsomes. Since the mutant procoat protein behaved exactly as the wild type procoat protein in the eukaryotic in vitro system, we propose that the ATP-dependent reaction observed for the eukaryotic system does not substitute for the membrane potential dependent reaction in the prokaryotic system.  相似文献   

3.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

4.
A Kuhn  H Y Zhu    R E Dalbey 《The EMBO journal》1990,9(8):2385-2389
The coat protein of bacteriophage M13 is inserted into the Escherichia coli plasma membrane as a precursor protein, termed procoat, with a typical leader peptide of 23 amino acid residues. Its membrane insertion requires the electrochemical potential but not the cellular components SecA and SecY. Since the electrochemical gradients result in the periplasmic side of the membrane being positively charged, the membrane potential could contribute to the transfer of the negatively charged central region of procoat across the membrane. Here we demonstrate that the central domain following the leader peptide can be translocated across the membrane even when the net charge of the region is changed from -3 to +3. This rules out an electrophoresis-like insertion mechanism for procoat. We also show that the sec independence of procoat insertion is linked to the presence of the second apolar domain. The deletion of most of the second apolar domain from a procoat fusion protein results in sec dependent membrane insertion of the hybrid protein. Moreover, like other proteins that require the sec genes, translocation of this sec dependent procoat protein is inhibited when positively charged residues are introduced after the leader peptide. Loop models involving one or two hydrophobic regions are presented that account for the differences in tolerance of positively charged residues.  相似文献   

5.
G Della Valle  R G Fenton  C Basilico 《Cell》1981,23(2):347-355
The major coat protein of coliphage M13 is an integral protein of the E. coli plasma membrane prior to its assembly into new virus particles. It is generated from its precursor, procoat, by a membrane-bound leader peptidase. We now describe the reconstitution of a highly purified preparation of this enzyme into vesicles of E. coli phospholipids. These vesicles bind procoat made in vitro and procoat isolated from in vitro synthesis. Both the crude and the purified substrates were converted posttranslationally to coat protein. A significant proportion of the coat protein becomes inserted into the vesicle bilayer, with the N terminus facing the vesicle interior and the C terminus exposed to the external medium. These results strongly suggest that highly purified leader peptidase from E. coli and phospholipids are the only components necessary to mediate the binding, processing and insertion of this integral membrane protein.  相似文献   

6.
Conditional lethal YidC mutants have been isolated to decipher the role of YidC in the assembly of Sec-dependent and Sec-independent membrane proteins. We now show that the membrane insertion of the Sec-independent M13 procoat-lep protein is inhibited in a short time in a temperature-sensitive mutant when shifted to the nonpermissive temperature. This provides an additional line of evidence that YidC plays a direct role in the insertion of the Sec-independent M13 procoat protein. However, in the temperature-sensitive mutant, the insertion of the Sec-independent Pf3 phage coat protein and the Sec-dependent leader peptidase were not strongly inhibited at the restricted temperatures. Conversely, using a cold-sensitive YidC strain, we find that the membrane insertion of the Sec-independent Pf3 coat protein is blocked, and the Sec-dependent leader peptidase is inhibited at the nonpermissive temperature, whereas the insertion of the M13 procoat protein is nearly normal. These data show that the YidC function for procoat and its function for Pf3 coat and possibly leader peptidase are genetically separable and suggest that the YidC structural requirements are different for the Sec-independent M13 procoat and Pf3 coat phage proteins that insert by different mechanisms.  相似文献   

7.
The coat protein of coliphage M13 is an integral protein of the host-cell cytoplasmic membrane prior to its assembly into virions. It is initially synthesized as procoat, a soluble precursor with a 23 amino acid leader sequence at its amino terminus. 35S-labeled procoat accumulates during an in vitro translation reaction that contains 35S-methionine and RNA from M13-infected cells. Radiochemically pure procoat has been isolated from in vitro translation reactions by extraction into an organic solvent and gel filtration through Sephadex LH-60. Radiochemically pure procoat can be used as substrate in rapid and quantitative assays for leader peptidase and for leader peptide hydrolase, an enzyme that degrades the leader peptide after its release from procoat. Procoat solubility, digestion by leader peptidase and processing by membranes are affected by the presence of Mg2+ ion. Isolated procoat is soluble in water at low ionic strength and mildly alkaline pH as well as in detergent solutions. It is cleaved to coat protein by purified E. coli leader peptidase and by inverted E. coli inner-membrane vesicles. These properties of the purified procoat mirror those of the procoat in crude extracts. This suggests that there are no other soluble components that are necessary for the assembly of procoat into the membrane and its conversion to coat; specifically, it provides powerful evidence that protein synthesis is not involved.  相似文献   

8.
The major coat protein (gene 8 product) of bacteriophage M13 is an integral membrane protein during infection of host cells. It is synthesized as a larger precursor (procoat) with a leader sequence of 23 amino acids at its amino terminus. In vivo studies have shown that procoat only inserts into the host-cell plasma membrane after its synthesis is completed. We now demonstrate that procoat can post-translationally insert into inverted cytoplasmic membrane vesicles from E. coli and can be processed proteolytically to yield coat protein. Procoat changes from an assembly-competent substrate to an incompetent (denatured) form within minutes after its synthesis; much of the procoat that accumulates during an hour of in vitro synthesis is therefore denatured. These studies emphasize the importance of stringent criteria for the demonstration of obligate cotranslational assembly.  相似文献   

9.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader peptidase from its leader (signal) peptide before it is assembled onto the phage DNA. The transmembrane regions of the procoat protein play an important role in all these processes. Using cysteine mutants with mutations in the transmembrane regions of the procoat and coat proteins, we investigated which of the residues are involved in multimer formation, interaction with the leader peptidase, and formation of M13 progeny particles. We found that most single cysteine residues do not interfere with the membrane insertion, processing, and assembly of the phage. Treatment of the cells with copper phenanthroline showed that the cysteine residues were readily engaged in dimer and multimer formation. This suggests that the coat proteins assemble into multimers before they proceed onto the nascent phage particles. In addition, we found that when a cysteine is located in the leader peptide at the -6 position, processing of the mutant procoat protein and of other exported proteins is affected. This inhibition of the leader peptidase results in death of the cell and shows that there are distinct amino acid residues in the M13 procoat protein involved at specific steps of the phage assembly process.  相似文献   

10.
We have examined the effects of thermosensitive mutations in secA and secY (prlA) genes on the export of proteins to the three layers of the Escherichia coli cell surface. After several hours at the nonpermissive temperature, the export of two major outer membrane proteins, lipoprotein and OmpA, is delayed, then essentially blocked, in either a secA or secY strain. These mutations also have a strong effect on the export of several proteins, such as maltose binding protein, to the periplasm, though the export of many periplasmic proteins is not affected. secA and secY block the assembly of leader peptidase, which is made without a leader sequence, into the inner membrane. However, the membrane assembly of M13 coat protein (an inner membrane protein made with an amino-terminal leader sequence) is not affected. Thus, the requirement for sec function for export does not correlate with the presence or absence of leader peptide or with a particular subcellular compartment, but rather is specific to each particular protein.  相似文献   

11.
A Kuhn  G Kreil    W Wickner 《The EMBO journal》1986,5(13):3681-3685
M13 procoat protein has two hydrophobic domains, one in the leader peptide and one which anchors the mature coat protein in the membrane. Disruption of the membrane anchor region by insertion of arginyl residues does not yield periplasmic coat protein. Instead, the rate of membrane assembly is slowed greater than 100-fold (t1/2 less than 5 s for wild-type, t1/2 greater than 10 min for mutant). The hydrophobic region of mature coat protein not only functions as a membrane anchor, but has an important role in the membrane assembly process per se.  相似文献   

12.
The leader peptidase of Escherichia coli cleaves a 23-residue leader sequence from M13 procoat to yield mature coat protein in virus-infected cells. We have reconstituted pure leader peptidase into vesicles of E. coli lipids and found that these liposomes are active in the conversion of procoat to coat. Trypsin removes all but 10% of the leader peptidase, yet the vesicles retain nearly full capacity to convert procoat to coat, suggesting that only procoat which inserts across the liposomal membrane is a substrate for leader peptidase. This is confirmed by the finding that over 70% of the coat protein produced by these liposomes spans the membrane. The rate at which leader peptidase inside protease-treated liposomes cleaves externally added procoat is comparable to the rate of procoat cleavage by the same amount of leader peptidase in detergent micelles. Thus, procoat can rapidly integrate across a liposomal membrane and be cleaved to coat protein. These findings confirm the central part of the membrane trigger hypothesis that certain proteins (such as procoat) can cross a bilayer without the aid of a proteinaceous pore or transport system.  相似文献   

13.
Gene 8 of bacteriophage M13 codes for procoat, the precursor of its major coat protein. Gene 8 has been cloned into a plasmid and mutagenized. We have isolated mutants of this gene in which procoat is synthesized but is not processed to coat protein. We now describe mutants in the leader region of procoat, at positions -6, -3, and -1 with respect to the leader peptidase cleavage site. These positions are quite conserved among the leader peptides of various pre-proteins. Each of these mutant procoats is synthesized at a normal rate and inserts correctly into the plasma membrane, as judged by its accessibility to protease in intact spheroplasts. Procoat accumulates, largely in its transmembrane form, and is not cleaved to coat. In detergent extracts, the mutant procoats are very poor substrates for added leader peptidase. We conclude that these 3 residues are not conserved for insertion across the membrane but are part of an essential recognition site for the leader peptidase.  相似文献   

14.
M13 procoat inserts into liposomes in the absence of other membrane proteins   总被引:11,自引:0,他引:11  
Procoat, the precursor form of the major coat protein of coliphage M13, assembles into the Escherichia coli inner membrane and is cleaved to mature coat protein by leader peptidase. This assembly process has previously been reconstituted using lipids and purified leader peptidase in a cell-free protein synthesis reaction (Watts, C., Silver, P., and Wickner, W. (1981) Cell 25, 347-353; Ohno-Iwashita, Y., and Wickner, W. (1983) J. Biol. Chem. 258, 1895-1900). We now report that procoat can also cross a liposomal membrane composed of only purified phospholipids; leader peptidase is not needed to catalyze insertion. When procoat is synthesized in vitro in the presence of liposomes with encapsulated chymotrypsin, the procoat inserts spontaneously through the membrane and is degraded. The protease was shown by several criteria to be in the lumen of the liposomes. These results demonstrate that the precursor form of an E. coli integral membrane protein can cross a membrane without the aid of leader peptidase or any other membrane proteins.  相似文献   

15.
Conditionally lethal Escherichia coli mutants in secY (prlA) show defective export of proteins to the periplasm and outer membrane. It has been proposed that this gene and other sec genes must act on pro-OmpA at an early stage of protein synthesis in order to allow later translocation to occur. We have described a temperature-sensitive mutation in which the secYts function is impaired at the nonpermissive temperature (Ito, K. (1984) Mol. Gen. Genet. 197, 204-208). A plasmid bearing the wild-type secY gene under the control of the lactose operon (Shiba, K., Ito, K., Yura, T., and Cerretti, D. P. (1984) EMBO J. 3, 631-635) has been introduced into this mutant strain. We now report that the in vivo chase of pulse-labeled full length pro-OmpA to mature OmpA is accelerated by inducing the synthesis of the wild-type secY protein at the end of the period of pulse labeling. We have also assayed the requirements for secY function for in vitro protein translocation. Membranes derived from secY ts cells which were incubated at 42 degrees C were inactive in vitro in the post-translational uptake and processing of pro-OmpA. Thus, the secY protein can act post-translationally, enhancing the translocation of completed pro-OmpA polypeptide chains across the plasma membrane.  相似文献   

16.
The purification of M13 procoat, a membrane protein precursor.   总被引:1,自引:0,他引:1       下载免费PDF全文
Many membrane proteins and most secreted proteins are initially made as precursors with an N-terminal leader sequence. We now report the isolation of M13 procoat, the precursor of the membrane-bound form of M13 coat protein. There are 40 000 copies of M13 procoat protein/cell during M13 amber 7 virus infection. Purified procoat is quantitatively cleaved by isolated leader peptidase to yield mature-length coat protein. Rabbit antibodies to M13 procoat will precipitate procoat but not coat, suggesting that the antibody molecules are specifically recognizing the leader sequence or the conformation which it induces in the whole procoat molecule.  相似文献   

17.
The major coat protein (gene 8 protein) of bacteriophage M13 has been studied intensively as a model of membrane assembly, protein packing, and protein-DNA interactions. Because this protein is essential for assembly of the phage, very few mutants have been isolated. We have therefore cloned the gene 8 into a plasmid under control of the araB promoter. In the presence of arabinose, the cloned gene is expressed at a rate comparable to that in an M13-infected cell. Plasmid-derived procoat is inserted across the plasma membrane and processed to coat at a normal rate. The coat can support plaque formation by a defective M13 virus (M13am8) with an amber mutation in its procoat gene. This complementation assay was used to screen the mutagenized, cloned gene 8 for mutants which fail to make fully functional coat. Mutants were obtained which fail to synthesize procoat, which do not convert procoat to mature coat protein, or in which the coat protein is incapable of assembling into infectious virions.  相似文献   

18.
Leader peptidase cleaves the amino-terminal leader sequences of many secreted and membrane proteins. We have examined the function of leader peptidase by constructing an Escherichia coli strain where its synthesis is controlled by the arabinose B promoter. This strain requires arabinose for growth. When the synthesis of leader peptidase is repressed, protein precursors accumulate, including the precursors of M13 coat protein (an inner membrane protein), maltose binding protein (a periplasmic protein), and OmpA protein (an outer membrane protein). These precursors are translocated across the plasma membrane, as judged by their sensitivity to added proteinase K. However, pro-OmpA and pre-maltose binding protein are retained at the outer surface of the inner membrane. Thus, leader peptides anchor translocated pre-proteins to the outer surface of the plasma membrane and must be removed to allow their subsequent release into the periplasm or transit to the outer membrane.  相似文献   

19.
Processing of preproteins by liposomes bearing leader peptidase   总被引:2,自引:0,他引:2  
Y Ohno-Iwashita  P Wolfe  K Ito  W Wickner 《Biochemistry》1984,23(25):6178-6184
Procoat, the precursor form of M13 coat protein, assembles into sealed liposomes bearing only internally oriented leader peptidase and is processed to yield transmembrane coat protein [Ohno-Iwashita, Y., & Wickner, W. (1983) J. Biol. Chem. 258, 1895-1900]. The precursors of maltose-binding protein and of outer membrane protein A (OmpA) are also processed by these liposomes, showing that these preproteins can at least partially insert across a lipid bilayer. The ability to insert into a bilayer may be a general property of preproteins. The cleavage products, mature OmpA and maltose-binding protein, are not sequestered within the liposomes, suggesting that an additional factor(s) is (are) required for complete translocation. Liposomes were also prepared with leader peptidase in a more physiological, membrane-spanning orientation. These liposomes were also active in the cleavage of externally added procoat, pro-OmpA, and pre maltose-binding protein, though the mature OmpA and maltose-binding protein were still not sequestered within the liposomes. Pretreatment of these liposomes with trypsin cleaved near the amino terminus of the leader peptidase, inactivating the enzyme. The function of this amino-terminal domain, on the opposite side of the membrane from the catalytic domain, is unknown.  相似文献   

20.
Leader peptidase, an integral membrane protein of Escherichia coli, is made without a cleavable leader sequence. It has 323 amino acid residues and spans the plasma membrane with a small amino-terminal domain exposed to the cytoplasm and a large, carboxyl-terminal domain exposed to the periplasm. We have investigated which regions of leader peptidase are necessary for its assembly across the membrane. Deletions were made in the carboxyl-terminal domain of leader peptidase, removing residues 141-222, 142-323, or 222-323. Protease accessibility was used to determine whether the polar, carboxyl-terminal domains of these truncated leader peptidases were translocated across the membrane. The removal of either residues 222-323 (the extreme carboxyl terminus) or residues 141-222 does not prevent leader peptidase membrane assembly. However, leader peptidase lacking both regions, i.e. amino acid residues 142-323, cannot translocate the remaining portion of its carboxyl terminus across the membrane. Our data suggest that the polar, periplasmic domain of leader peptidase contains information which is needed for membrane assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号