首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Coral reefs are renowned for their spectacular biodiversity and the close links between fishes and corals. Despite extensive fossil records and common biogeographic histories, the evolution of these two key groups has rarely been considered together. We therefore examine recent advances in molecular phylogenetics and palaeoecology, and place the evolution of fishes and corals in a functional context. In critically reviewing the available fossil and phylogenetic evidence, we reveal a marked congruence in the evolution of the two groups. Despite one group consisting of swimming vertebrates and the other colonial symbiotic invertebrates, fishes and corals have remarkably similar evolutionary histories. In the Paleocene and Eocene [66–34 million years ago (Ma)] most modern fish and coral families were present, and both were represented by a wide range of functional morphotypes. However, there is little evidence of diversification at this time. By contrast, in the Oligocene and Miocene (34–5.3 Ma), both groups exhibited rapid lineage diversification. There is also evidence of increasing reef area, occupation of new habitats, increasing coral cover, and potentially, increasing fish abundance. Functionally, the Oligocene–Miocene is marked by the appearance of new fish and coral taxa associated with high‐turnover fast‐growth ecosystems and the colonization of reef flats. It is in this period that the functional characteristics of modern coral reefs were established. Most species, however, only arose in the last 5.3 million years (Myr; Plio–Pleistocene), with the average age of fish species being 5.3 Myr, and corals just 1.9 Myr. While these species are genetically distinct, phenotypic differences are often limited to variation in colour or minor morphological features. This suggests that the rapid increase in biodiversity during the last 5.3 Myr was not matched by changes in ecosystem function. For reef fishes, colour appears to be central to recent diversification. However, the presence of pigment patterns in the Eocene suggests that colour may not have driven recent diversification. Furthermore, the lack of functional changes in fishes or corals over the last 5 Myr raises questions over the role and importance of biodiversity in shaping the future of coral reefs.  相似文献   

2.
王耕  董瑞  周腾禹  徐惠民  丁德文 《生态学报》2021,41(10):4077-4089
以中国西沙珊瑚礁生态监控区为例,从生态系统完整性视角出发,结合珊瑚礁功能群组与环境变化的多重反馈效应,运用系统动力学方法构建了西沙珊瑚礁生态系统动态诊断模型,并通过基础情景和典型干扰情景(捕捞活动、陆源沉积、长棘海星(Acanthaster planci)暴发)的模拟过程,分析该生态监控区2010-2050年生态系统完整性的发展趋势及演变机理。结果显示:(1)系统动力学与生态系统完整性评价方法的整合,为珊瑚礁生态系统完整性的定量研究提供了一种可行性的方法;(2)珊瑚礁生态系统各效应指数中累积效应的变化最为明显,2010-2050年指数最大增长17.2,年均增长率约为1.2%,综合完整性指数在波动变化中稳步上升,珊瑚礁受损程度由中受损向中、低受损转变;(3)不同状态的珊瑚礁生态系统完整性,在其演化的不同阶段各有差异性,并且这种差异通常随时间推移才逐渐放大;(4)无论何种情景下,珊瑚礁生态系统都具有一定的恢复能力,尤其处于系统演化的释放重组阶段(2035-2040年),生态系统的不稳定将创造了一定的可恢复性。研究结果对于分析西沙珊瑚礁生态系统的整体演化过程提供了理论借鉴,也为我国后续的珊瑚礁生态系统适应性修复理论模式研究提供了重要的基础。  相似文献   

3.
Recently, a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden-layer feedforward neural networks (SLFNs). It was much faster than the traditional gradient-descent-based learning algorithms due to the analytical determination of output weights with the random choice of input weights and hidden layer biases. However, this algorithm often requires a large number of hidden units and thus slowly responds to new observations. Evolutionary extreme learning machine (E-ELM) was proposed to overcome this problem; it used the differential evolution algorithm to select the input weights and hidden layer biases. However, this algorithm required much time for searching optimal parameters with iterative processes and was not suitable for data sets with a large number of input features. In this paper, a new approach for training SLFNs is proposed, in which the input weights and biases of hidden units are determined based on a fast regularized least-squares scheme. Experimental results for many real applications with both small and large number of input features show that our proposed approach can achieve good generalization performance with much more compact networks and extremely high speed for both learning and testing.  相似文献   

4.
Although the global decline in coral reef health is likely to have profound effects on reef associated fishes, these effects are poorly understood. While declining coral cover can reduce the abundance of reef fishes through direct effects on recruitment and/or mortality, recent evidence suggests that individuals may survive in disturbed habitats, but may experience sublethal reductions in their condition. This study examined the response of 2 coral associated damselfishes (Pomacentridae), Chrysiptera parasema and Dascyllus melanurus, to varying levels of live coral cover. Growth, persistence, and the condition of individuals were quantified on replicate coral colonies in 3 coral treatments: 100% live coral (control), 50% live coral (partial) and 0% live coral (dead). The growth rates of both species were directly related to the percentage live coral cover, with individuals associated with dead corals exhibiting the slowest growth, and highest growth on control corals. Such differences in individual growth between treatments were apparent after 29 d. There was no significant difference in the numbers of fishes persisting or the physiological condition of individuals between different treatments on this time-scale. Slower growth in disturbed habitats will delay the onset of maturity, reduce lifetime fecundity and increase individual's vulnerability to gape-limited predation. Hence, immediate effects on recruitment and survival may underestimate the longer-term impacts of declining coral on the structure and diversity of coral-associated reef fish communities.  相似文献   

5.
In this paper, the recently developed Extreme Learning Machine (ELM) is used for direct multicategory classification problems in the cancer diagnosis area. ELM avoids problems like local minima, improper learning rate and overfitting commonly faced by iterative learning methods and completes the training very fast. We have evaluated the multi-category classification performance of ELM on three benchmark microarray datasets for cancer diagnosis, namely, the GCM dataset, the Lung dataset and the Lymphoma dataset. The results indicate that ELM produces comparable or better classification accuracies with reduced training time and implementation complexity compared to artificial neural networks methods like conventional back-propagation ANN, Linder's SANN, and Support Vector Machine methods like SVM-OVO and Ramaswamy's SVM-OVA. ELM also achieves better accuracies for classification of individual categories.  相似文献   

6.
Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef‐associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid‐sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait–environment interactions as well as by species and trait–trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities.  相似文献   

7.
Zhao M X  Yu K F  Zhang Q M  Shi Q 《农业工程》2008,28(4):1419-1428
84 quadrats from 5 vertical transects of Luhuitou fringing reef are investigated in detail by using video-quadrat and indoor-interpretation methods. The results show that (1) the reef consists of 69 species of hermatypic corals belonging to 24 genera and 13 families which are unevenly distributed in abundance. (2) Among all the corals, Porites lutea is the most dominant species with importance value percentage up to 36.62%; Porites and Acropora are dominant genera with importance value percentages 43.85% and 22.88%, respectively. (3) There exist distinct spatial differences in coral communities. Both the coral covers and coral diversity indices on the northeastern transects are higher than those on the central and southern transects. (4) Coral communities also show remarkable zonal characteristics with less coral species occurring on reef flat than on reef slope. The importance value percentage of the sole dominant coral genus, Porites, is over 50%, while on the reef slope, the importance value percentages are 28.33% for the first dominant genus Acropora and 26.71% for the second dominant genus Porites. Our further analysis suggests that the spatial and zonal differences of coral diversity pattern are correlated with both natural environmental changes and human activities. The shallow water reef flat is frequently exposed at low tide and it receives more anthropogenic influences (including dredging and trampling) than the deep water reef slope. Thus, the coral community on the reef flat is not as well developed as that on reef slope. The relatively poor coral covers and coral diversity indices on the central and southern transects are closely related to heavy human activities around these sites such as aquaculture, fishing and coastal sewage drainage. Therefore, the impact of human activities must be taken into account in developing strategies for the protection of this coral reef.  相似文献   

8.
84 quadrats from 5 vertical transects of Luhuitou fringing reef are investigated in detail by using video-quadrat and indoor-interpretation methods. The results show that (1) the reef consists of 69 species of hermatypic corals belonging to 24 genera and 13 families which are unevenly distributed in abundance. (2) Among all the corals, Porites lutea is the most dominant species with importance value percentage up to 36.62%; Porites and Acropora are dominant genera with importance value percentages 43.85% and 22.88%, respectively. (3) There exist distinct spatial differences in coral communities. Both the coral covers and coral diversity indices on the northeastern transects are higher than those on the central and southern transects. (4) Coral communities also show remarkable zonal characteristics with less coral species occurring on reef flat than on reef slope. The importance value percentage of the sole dominant coral genus, Porites, is over 50%, while on the reef slope, the importance value percentages are 28.33% for the first dominant genus Acropora and 26.71% for the second dominant genus Porites. Our further analysis suggests that the spatial and zonal differences of coral diversity pattern are correlated with both natural environmental changes and human activities. The shallow water reef flat is frequently exposed at low tide and it receives more anthropogenic influences (including dredging and trampling) than the deep water reef slope. Thus, the coral community on the reef flat is not as well developed as that on reef slope. The relatively poor coral covers and coral diversity indices on the central and southern transects are closely related to heavy human activities around these sites such as aquaculture, fishing and coastal sewage drainage. Therefore, the impact of human activities must be taken into account in developing strategies for the protection of this coral reef.  相似文献   

9.
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow‐water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef‐dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine‐scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes.  相似文献   

10.
Papermaking wastewater accounts for a large proportion of industrial wastewater, and it is essential to obtain accurate and reliable effluent indices in real-time. Considering the complexity, nonlinearity, and time variability of wastewater treatment processes, a dynamic kernel extreme learning machine (DKELM) method is proposed to predict the key quality indices of effluent chemical oxygen demand (COD). A time lag coefficient is introduced and a kernel function is embedded into the extreme learning machine (ELM) to extract dynamic information and obtain better prediction accuracy. A case study for modeling a wastewater treatment process is demonstrated to evaluate the performance of the proposed DKELM. The results illustrate that both training and prediction accuracy of the DKELM model is superior to other models. For the prediction of the quality indices of effluent COD, the determinate coefficient of the DKELM model is increased by 27.52 %, 21.36 %, 10.42 %, and 10.81 %, compared with partial least squares, ELM, dynamic ELM, and kernel ELM, respectively.  相似文献   

11.
Sponges are dominant components of coral reef ecosystems, often exceeding reef-building corals in abundance. Large sponges, often more than 1 m in diameter, may be hundreds to thousands of years old. When damaged or dislodged, large sponges usually die because they are unable to reattach to the reef substratum. Because suitable methods for reattaching dislodged sponges are lacking, they are typically excluded from coral reef restoration efforts. Here we present a novel technique for the reattachment of large sponges that was tested using the Caribbean Giant barrel sponge, Xestospongia muta . Transplants of X. muta were conducted at 15- and 30-m depth off Key Largo, Florida. Despite the active hurricane season of 2005, 90% of deep and 35% of shallow transplants survived, with nearly 80% reattaching to the substratum and growing after 2.3–3 years. This technique may be generally adapted for securing large sponges in coral reef restoration efforts.  相似文献   

12.
Henderson Island, in the Pitcairn Group, preserves a Pleistocene atoll physiography with the rim of the raised reef structure, supporting spur and groove topography, enclosing a central lagoon. Excellent preservation of coral reef communities occurs along the ancient atoll rim and within the central lagoon. The previously interpreted depositional nature of the fossil atoll structure is herein corroborated with geomorphologic and stratigraphic evidence from previously un-visited portions of the island. Stratigraphic and lateral facies relationships indicate a physiographic zonation which includes spur and grooves, outer reef flat, lagoon margin, and an interior lagoon with patch reefs. The in situ occurrence and zonation of reef coral communities around the periphery and within the interior of the island appear to reflect the original physiography of the atoll lagoon, with the most pronounced reef development on the SE side of the original atoll. Stratigraphic units which comprise the raised atoll lagoon structure represent different time intervals, so the atoll lagoon structure formed during various sea level fluctuations. The modern atolls of the Pitcairn Group, Oeno and Ducie, provide some comparisons (similarities and differences) with the fossil lagoon on top of Henderson Island.  相似文献   

13.
珊瑚礁生态保护与管理研究   总被引:6,自引:2,他引:4  
珊瑚礁以其极高的生物多样性和生物生产力以及优美的自然景观 ,为人们提供了生活需要和游乐的资源 ,但同时也受到过度利用的破坏 ,尤其是近年来显得更为严重 ,因而珊瑚礁的生态保护与管理成为近 2 0年来倍受关注的问题。本文回顾了国内外珊瑚礁生态保护和管理的一些研究成果 ,通过自然和社会经济调查 ,并根据保护、研究和可持续利用的原则 ,将雷州半岛灯楼角珊瑚礁保护区划分为野生区 ,保护区、季节性封闭区和一般使用区 ,并强调公众参与、社区组织和领导组成、教育和培训、资源管理等为保护和管理中的措施  相似文献   

14.
Transplantation of coral fragments is seen as a potential method to rapidly restore coral cover to areas of degraded reef; however, considerable research is still needed to assess the effectiveness of coral transplantation as a viable reef restoration tool. Initially, during restoration efforts, coral transplants are attached artificially. Self‐attachment (i.e., growth of coral tissue onto the substrate) provides a more secure and lasting bond, thus knowledge about self‐attachment times for corals is of importance to reef restoration. While it is known that coral fragments may generate new tissue and bond to substrata within a few weeks of transplantation, surprisingly little is known about the speed of self‐attachment for most species. Two independent experiments were carried out to examine the self‐attachment times of 12 scleractinian and one non‐scleractinian coral species to a natural calcium carbonate substrate. The first experiment examined times to self‐attachment in 11 species of differing morphologies from seven families over approximately 7 months, whereas the second experiment examined three fast‐attaching Acropora species over approximately 1 month. In the first experiment, the branching species Acropora muricata had a significantly faster self‐attachment time compared to all other species, while Echinopora lamellosa had the slowest self‐attachment time. For the second experiment, A. muricata was significantly slower to self‐attach than Acropora hyacinthus (tabular) and Acropora digitifera (corymbose‐digitate). The results suggest that a combination of factors including growth rates, growth form and life history may determine how quickly fragments of coral species self‐attach after fragmentation and transplantation.  相似文献   

15.
Xisha Islands, located in the northern part of South China Sea, consist of more than 20 islands and atolls. The coral reef of Xisha Islands belongs to the typical ocean distribution of world’s coral reefs, its ecosystem is the most typical in our country and hermatypic coral species are about three-quarters of the total coral species in China. It is addressed with the oldest coral reef community which of the most original and valuable in China. The previous research shows that the islands studded in South China Sea such as Xisha Islands have important influence on the formation of coral reefs along the mainland coast by multiplying and migrating from south to the north. It is supplementary sources of coastal coral larvae in Hainan and Guangdong. Therefore, carrying out the monitoring of coral reef community ecosystem is of great significance to the ecological protection. By the Manta tow and the Line Intercept Transect method, five stations (Xisha Yong xing dao, Shi dao, Xisha zhou, Zhao Shu dao and Bei dao) on Xisha ecological monitoring area were monitored continually from 2005 to 2009. We compared the index changes of Hermatypic coral’s species, coverage and recruitment, and combining with Condition Index, Succession Index, and the variation trend of hard coral in Xisha were analyzed.
The results show that, from 2005 to 2009, the coverage of living hermatypic corals in ecological monitoring area is sharply reduced from 68.19% to 7.93%, while the dead coral coverage is sharply increased from 4.70% to 72.90%. Coral recruitment is reduced from 1.18 ind/100 m2 to 0.07 ind/100 m2, hermatypic coral species decreased from 87 to 35. In 2005, the health of coral reefs was very good, and the Condition Index was 1.097. However, the Condition Index cut down to a very low degree in 2009. It was only ?0.880. The Succession Index belonged to “very low degree” from 2005 to 2009, and the numerical value was gradually reduce from ?0.984 to ?1.876.
As a whole, hermatypic corals are serious degrade regionally and caused great change to the coral structure and biodiversity, this will lead to a continuous degradation of coral reefs.  相似文献   

16.
珊瑚礁作为一种典型的海洋生态系统,具有巨大的固碳和储碳潜力。然而,目前对于珊瑚礁的净碳能力(碳释放与碳吸收)仍存在争议,主要归因于珊瑚共生体碳代谢的多样性和复杂性。珊瑚礁在生物钙化、呼吸过程中向大气释放二氧化碳(CO2);但在生物合成和沉积过程中却可以将碳进行固定与埋藏;为此,珊瑚礁的碳源碳汇身份还有待明确。现有部分研究表明,共生体通过碳代谢可以促进珊瑚礁吸收大气中的CO2。此外,珊瑚礁和海岸带蓝碳生态系统通常表现出很强的连通性,珊瑚共生体碳代谢能有效提高海岸带盐沼植被、海草床、海洋浮游植物等生物的碳汇功能。为了加深对珊瑚礁碳源-碳汇功能的理解,综述了珊瑚共生体的碳代谢特征,梳理了共生体中碳的关键生态过程(有机碳的迁移、无机碳的转化、两者的赋存状态),总结了细菌-虫黄藻-病毒在共生体碳代谢中的作用,评述了珊瑚礁碳源-碳汇特征及影响因子。旨在阐明珊瑚共生体碳代谢的关键过程,并基于此寻求有效的珊瑚礁碳增汇技术,形成以碳增量为主的珊瑚保护与修复技术,提升珊瑚礁在蓝碳生态系统中的贡献。  相似文献   

17.
Few studies have considered how seagrass fish assemblages are influenced by surrounding habitats. This information is needed for a better understanding of the connectivity between tropical coastal ecosystems. To study the effects of surrounding habitats on the composition, diversity and densities of coral reef fish species on seagrass beds, underwater visual census surveys were carried out in two seagrass habitat types at various locations along the coast of Zanzibar (Tanzania) in the western Indian Ocean. Fish assemblages of seagrass beds in a marine embayment with large areas of mangroves (bay seagrasses) situated 9 km away from coral reefs were compared with those of seagrass beds situated on the continental shelf adjacent to coral reefs (reef seagrasses). No differences in total fish density, total species richness or total juvenile fish density and species richness were observed between the two seagrass habitat types. However, at species level, nine species showed significantly higher densities in bay seagrasses, while eight other species showed significantly higher densities in reef seagrasses. Another four species were exclusively observed in bay seagrasses. Since seagrass complexity could not be related to these differences, it is suggested that the arrangement of seagrass beds in the surrounding landscape (i.e. the arrangement on the continental shelf adjacent to the coral reef, or the arrangement in an embayment with mangroves situated away from reefs) has a possible effect on the occurrence of various reef-associated fish species on seagrass beds. Fish migration from or to the seagrass beds and recruitment and settlement patterns of larvae possibly explain these observations. Juvenile fish densities were similar in the two types of seagrass habitats indicating that seagrass beds adjacent to coral reefs also function as important juvenile habitats, even though they may be subject to higher levels of predation. On the contrary, the density and species richness of adult fish was significantly higher on reef seagrasses than on bay seagrasses, indicating that proximity to the coral reef increases density of adult fish on reef seagrasses, and/or that ontogenetic shifts to the reef may reduce adult density on bay seagrasses.  相似文献   

18.
为更好地保护和管理西沙永兴岛附近海域珊瑚礁鱼类,于2020—2021年对永兴岛上岸渔获物进行了调查研究,分析了鱼类群落结构组成及其变化和演替特征。结果表明:调查共发现永兴岛附近海域珊瑚礁鱼类101种,隶属于5目21科,以鲈形目鱼类最多,占总种类的84.16%,生物量超总渔获物的90%;科级水平鹦嘴鱼科鱼类最多,达21种,生物量超总渔获物的45%。28种珊瑚礁鱼类是永兴岛附近海域主要捕捞对象,占总渔获物的80%以上。永兴岛附近海域珊瑚礁鱼类呈现过度捕捞,一是主要渔获物中的中大型鱼类均重偏小;二是本海域个体体型最大的鱼类出现较多消亡;三是肉食性鱼类大量消亡;四是植食性鱼类生物量占比超过了肉食性鱼类。永兴岛附近海域珊瑚礁鱼类已经演替到以植食性鱼类为主导的生态系统;大量海胆的出现,表明了这一珊瑚礁生态系统在进一步衰退,向以海胆为主导的生态系统演变。保护西沙永兴岛附近海域珊瑚礁鱼类已经刻不容缓,需要严格地控制本海域的捕捞强度。  相似文献   

19.
Coral reefs provide food and livelihoods for hundreds of millions of people as well as harbour some of the highest regions of biodiversity in the ocean. However, overexploitation, land‐use change and other local anthropogenic threats to coral reefs have left many degraded. Additionally, coral reefs are faced with the dual emerging threats of ocean warming and acidification due to rising CO2 emissions, with dire predictions that they will not survive the century. This review evaluates the impacts of climate change on coral reef organisms, communities and ecosystems, focusing on the interactions between climate change factors and local anthropogenic stressors. It then explores the shortcomings of existing management and the move towards ecosystem‐based management and resilience thinking, before highlighting the need for climate change‐ready marine protected areas (MPAs), reduction in local anthropogenic stressors, novel approaches such as human‐assisted evolution and the importance of sustainable socialecological systems. It concludes that designation of climate change‐ready MPAs, integrated with other management strategies involving stakeholders and participation at multiple scales such as marine spatial planning, will be required to maximise coral reef resilience under climate change. However, efforts to reduce carbon emissions are critical if the long‐term efficacy of local management actions is to be maintained and coral reefs are to survive.  相似文献   

20.
珊瑚病原微生物鉴定及其分子诊断技术进展   总被引:1,自引:1,他引:0  
珊瑚礁生态系统是热带海洋最突出、最具代表性的生态系统,具有极高的生态价值和经济价值,然而由珊瑚疾病引起的珊瑚礁退化已经成为珊瑚礁生态系统的主要威胁之一。许多微生物(主要包括细菌、真菌、病毒)被认为与珊瑚疾病发生密切相关,确定珊瑚疾病的病原并建立其快速诊断的方法是开展珊瑚疾病流行病学调查和制定防控措施的必由之路。本文主要综述珊瑚疾病的病原微生物及其分子诊断技术的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号