首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basal activity of Ca2+-ATPase in two isolates (NL56, UNC) and two clones (D6, W2) of P.falciparum was assessed. The effects of various concentrations of chloroquine phosphate and toxic concentrations of lead acetate were also evaluated in the clones and strains of P.falciparum. The Ca2+-ATPase activity was measured by monitoring the rate of release of inorganic phosphate from the gamma-position of ATP on spectrophotometer at 820nm wavelength. The various concentrations of chloroquine (3, 6, 9, 12, 18μg/ml) and lead acetate (5, 10, 20, 30, 40μg/ml) on Ca2+-ATPase activity were measured respectively. Chloroquine phosphate inhibited Ca2+-ATPase activity in both the isolates and the cloned strains of P.falciparum in concentration dependent manner. Median Inhibitory concentration of chloroquine (MIC50) estimated from the plot of activity against chloroquine concentration was found to be 2.6mg/ml at pH 7.4 for both the isolates and cloned strains examined. Lead acetate at concentrations 5-20μg/ml inhibited Ca2+-ATPase activity in concentration dependent manner in clone W2 (Chloroquine resistant strain) while the same range of concentrations of lead acetate stimulated the activity of the enzyme in clone D6 (Chloroquine sensitive strain).The inhibitory effect of lead acetate on the enzyme in clone D6 was observed at concentrations above 20μg/ml. The result also suggests that lead ions could modulate and moderate calcium ion homeostasis in P. falciparum via its effect on Ca2+-ATPase activity. Also sufficient influx of lead ions into P. falciparum may transform the biochemical or bioenergetics nature of chloroquine sensitive strain of P. falciparum (D6) to that similar to chloroquine resistant strain (W2). In conclusion, inhibition of Ca2+-ATPase activity of P.falciparum may be part of the mechanism of action of chloroquine in its use as chemotherapy for malaria. The study implies that populations simultaneously exposed to lead pollution and malaria infection may experience failure in chloroquine therapy.  相似文献   

2.
In vitro comparative studies of effects of amiridin (9-amino-2, 3, 5, 6, 7, 8-hexahydro-1H-cyclopentane (b) choline monohydrate hydrochloride) and tacrine physostigmine and piracetam on monoamine oxidase A (MAO-A) and B (MAO-B) activity in the rat brain were carried out. Piracetam (1 x 10(-4)-1 x 10(-3) M) dose-dependently increased MAO-A and MAO-B activity. At all concentrations used (1 x 10(-7)-5 x 10(-4) M) physostigmine had no effect on MAO-A and MAO-B activity. Amiridin was found to inhibit MAO-B activity at 5 x 10(-4) M concentration only. Tacrine inhibited MAO-A activity at 5 x 10(-4) M concentration. The therapeutical effects of amiridin and tacrine in treatment of Alzheimer disease were not related to their action on MAO-A and -B activity.  相似文献   

3.
The ethanolic root extract of Scrophularia lepidota, an endemic plant of the Turkish flora, has been investigated for its anti-protozoal and inhibitory effect towards plasmodial enoyl-ACP reductase (FabI), a key enzyme of fatty acid biosynthesis in Plasmodium falciparum. Chromatographic separation of the extract yielded 10 iridoids (1-10), two of which are new, and a known phenylethanoid glycoside (11). The structures of the new compounds were determined as 3,4-dihydro-methylcatalpol (8) and 6-O-[4'-O-trans-(3,4-dimethoxycinnamoyl)-alpha-L-rhamnopyranosyl]aucubin (scrolepidoside, 9) by spectroscopic means. The remaining metabolites were characterized as catalpol (1), 6-O-methylcatalpol (2), aucubin (3), 6-O-alpha-L-rhamnopyranosyl-aucubin (sinuatol, 4), 6-O-beta-D-xylopyranosylaucubin (5), ajugol (6), ajugoside (7), an iridoid-related aglycone (10) and angoroside C (11). Nine isolates were active against Leishmania donovani, with the new compound 9 being most potent (IC50 6.1 microg/ml). Except for 4, all pure compounds revealed some trypanocidal potential against Trypanosoma brucei rhodesiense (IC50 values 29.3-73.0 microg/ml). Only compound 10 showed moderate anti-plasmodial (IC50 40.6 microg/ml) and FabI enzyme inhibitory activity (IC50 100 microg/ml). 10 is the second natural product inhibiting the fatty acid biosynthesis of Plasmodium falciparum.  相似文献   

4.
A capsule containing an aromatase inhibitor (4-androsten-4-ol-3,17-dione) was subcutaneously implanted in four oligozoospermic beagle dogs and one azoospermic beagle dog with high plasma estradiol-17beta (E2) concentrations (15-19 pg/ml) and low plasma testosterone (T) concentrations (0.6-0.8 ng/ml) for 8 weeks and the effect of the aromatase inhibitor on spermatogenic dysfunction was assessed. Plasma E2 and T concentrations and semen quality were examined at 1 week intervals from 3 weeks before to 12 weeks after the start of treatment. Testicular biopsies were done twice (capsule implantation and removal). Plasma E2 concentrations of all dogs decreased (9-14 pg/ml) and plasma T concentrations increased (2.0-2.6 ng/ml) from 3 weeks after capsule implantation to capsule removal. The mean number of spermatozoa ejaculated by all four oligozoospermic dogs between 4 and 9 weeks after implantation was higher (127 x 10(6) to 205 x 10(6)) than before implantation (20 x 10(6) to 38 x 10(6)) (P < 0.05 and 0.01). Very low numbers (2 x 10(4) to 4 x 10(4)) of immotile spermatozoa were observed between 7 and 8 weeks after implantation in the semen collected from the dog with azoospermia. Before implantation, a few spermatozoa were seen in only one-fifth of the seminiferous tubules in this dog; 8 weeks after implantation, the mean diameter and mean number of round spermatids in the seminiferous tubules in all five dogs were higher than before implantation (P < 0.05). Implantation of the capsule containing the aromatase inhibitor in infertile dogs with abnormally high plasma E2 concentrations improved their spermatogenic function, concurrent with decreased plasma E2 and increased plasma T.  相似文献   

5.
Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1-7). Parasite infection decreased Ang-(1-7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1-7) decreased the level of infection in an A779 (specific antagonist of Ang-(1-7) receptor, MAS)-sensitive manner. 10(-7) M PD123319, an AT(2) receptor antagonist, partially reversed the effects of Ang-(1-7) and Ang II. However, 10(-6) M losartan, an antagonist of the AT(1) receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10(-8) M Ang II or 10(-8) M Ang-(1-7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10(-7) M A779. 10(-6) M dibutyryl-cAMP increased the level of infection and 10(-7) M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1-7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1-7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus.  相似文献   

6.
Lactating mice were fed trans-vaccenic acid (trans 11-18:1, TVA) to assess desaturation of TVA to cis9,trans11-conjugated linoleic acid (9/11CLA). Diets contained 30 g x kg(-1) 18:2n-6 (LA) or 20 g LA plus 10 g 18:0 (SA), TVA, or a CLA mixture (MCLA). Compared with SA, feeding TVA increased 9/11CLA concentrations in blood plasma phospholipid, triglyceride, and free fatty acid fractions. However, concentrations of 9/11CLA in plasma fractions were greater when MCLA was fed compared with SA or TVA. No 9/11CLA was detected in liver of mice fed SA, and it was only 1 mg x g(-1) of total fatty acids in the carcass. In contrast, 9/11CLA content of liver (5 mg x g(-1)) and carcass (6 mg x g(-1)) of mice fed TVA was similar to liver (5 mg x g(-1)) and carcass (7 mg x g(-1)) of mice fed MCLA. Mammary tissue of SA-fed mice had no detectable 9/11 CLA, compared with 5 or 14 mg x g(-1) for TVA or MCLA-fed mice. Stearoyl-CoA desaturase activity in mammary tissue from TVA-fed dams was 14% greater compared with SA. Activity of this enzyme in liver tissue was similar among treatments. In pups nursing TVA-fed dams, 9/1 ICLA accounted for 3 mg x g(-1) in liver but no 9/11CLA was detected in the carcass. In pups nursing MCLA-fed dams, however, 9/11CLA accounted for 8 and 6 mg x g(-1) in liver and carcass. Results indicated TVA desaturation enhanced 9/11CLA in tissues and milk fat.  相似文献   

7.
Both ascorbic acid and copper were strong prooxidants in the oxidation of linoleate in a buffered (pH 7.0) aqueous dispersion at 37 degrees C. Minimum concentrations at which catalytic activity was detected were 1.3 x 10(-7) m for copper and 1.8 x 10(-6) m for ascorbic acid. For concentrations up to 10(-3) m, the increase in rate of oxidation with increase in concentration of catalyst was greater for ascorbic acid than for copper. Ascorbic acid had maximum catalytic activity at 2.0 x 10(-3) m, but was still prooxidant at the highest concentration tested (5.0 x 10(-2) m). Dehydroascorbic acid was a weaker prooxidant than ascorbic acid. Further degradation products of ascorbic acid were not prooxidant. In early stages of the oxidation autocatalytic behavior was observed with copper, but not with ascorbic acid. Ascorbic acid functioned as a true catalyst, i.e., it accelerated the reaction but it was not oxidized simultaneously with the linoleate. It is proposed that the dehydroascorbic acid radical initiates the linoleate oxidation reaction.  相似文献   

8.
Two novel series of all-trans-beta-retinoic acid derivatives were synthesized and found to possess anticancer activity. The first series, cephalosporin 3'-retinoic esters 6 and 7 were, respectively, obtained by the condensation of all-trans-beta-retinoic acid (2) with cephalosporins 4 and 5. The second series, 7-(retinamido)cephalosporins 11 and 12, were synthesized, respectively, by the condensation of 2 with cephalosporins 9 and 10. These four heretofore undescribed compounds 6, 7, 11, and 12 showed inhibitory activity against murine leukemias (L1210 and P388), sarcoma 180, breast carcinoma (MCF7), and human T-lymphocytes (Molt4/C8 and CEM/0). They also inhibited squamous metaplasia and keratinization in tracheal organ cultures derived from vitamin-A-deficient hamsters. Moreover, cephalosporin 3'-retinoic ester 7 exhibited enhanced activity against keratinization with ED(50)=3.91 x 10(-11) M in the presence of a beta-lactamase from Staphylococcus aureus 95. A tumor targeting fusion protein (dsFv3-beta-lactamase) was also used in conjunction with cephem-based retinoid 7 and the potency of 7 toward L1210, P388, and MCF7 was found to approach that of the free retinoic acid (2). In the presence of dsFv3-beta-lactamase, tumor cells were found to be much more susceptible to retinoid 7 than normal human embryonic lung cells. These notions provide a new approach to the use of beta-retinoic acid for antitumor therapy.  相似文献   

9.
Pseudomonas cepacia 4G9 utilizes 2-tridecanone as its sole carbon source and has been shown to be resistant to a variety of antibiotics. To ascertain whether any of these characteristics were plasmid mediated, Escherichia coli HB101 was transformed with plasmid DNA isolated from Pseudomonas cepacia 4G9. No 2-tridecanone-utilizing transformants were obtained. Tetracycline (Tc)- and ampicillin (Ap)- resistant transformants were obtained at a low frequency. Plasmid deoxyribonucleic acid from antibiotic-resistant E. coli HB101 transformants had molecular weights of 2.9 x 10(6) for pJW2 Tcr and 5.4 x 10(6) for pJW3 Apr as determined by electron microscopy. Electron microscopy of plasmid deoxyribonucleic acid from P. cepacia 4G9 revealed a single plasmid species, pJW1 of 1.78 x 10(6). Tetracycline resistance in both P. cepacia 4G9 and E. coli HB101(pJW2) was inducible, whereas ampicillin resistance in P. cepacia 4G9 was constitutive. The level of ampicillin resistance coded by pJW3 was lower in P. cepacia 4G9 than in the transformant E. coli HB101(pJW3).  相似文献   

10.
Inhibition of bovine erythrocyte acetylcholinesterase (free and immobilized on controlled pore glass) by separate and simultaneous exposure to malathion and malathion transformation products which are generally formed during storage or through natural or photochemical degradation was investigated. Increasing concentrations of malathion, its oxidation product malaoxon, and its isomerisation product isomalathion inhibited free and immobilized AChE in a concentration-dependent manner. KI, the dissociation constant for the initial reversible enzyme inhibitor-complex, and k3, the first order rate constant for the conversion of the reversible complex into the irreversibly inhibited enzyme, were determined from the progressive development of inhibition produced by reaction of native AChE with malathion, malaoxon and isomalathion. KI values of 1.3 x 10(-4) M(-1), 5.6 x 10(-6) M(-1) and 7.2 x 10(-6)M(-1) were obtained for malathion, malaoxon and isomalathion, respectively. The IC50 values for free/immobilized AChE, (3.7 +/- 0.2) x 10(-4) M/(1.6 +/-0.1) x 10(-4), (2.4 +/- 0.3) x 10(-6)/(3.4 +/- 0.1) x 10(-6)M and (3.2 +/- 0.3) x 10(-6) M/(2.7 +/- 0.2) x 10(-6) M, were obtained from the inhibition curves induced by malathion, malaoxon and isomalathion, respectively. However, the products formed due to photoinduced degradation, phosphorodithioic O,O,S-trimethyl ester and O,O-dimethyl thiophosphate, did not noticeably affect enzymatic activity, while diethyl maleate inhibited AChE activity at concentrations > 10mM. Inhibition of acetylcholinesterase increased with the time of exposure to malathion and its inhibiting by-products within the interval from 0 to 5 minutes. Through simultaneous exposure of the enzyme to malaoxon and isomalathion, an additive effect was achieved for lower concentrations of the inhibitors (in the presence of malaoxon/isomalathion at concentrations 2 x 10(-7) M/2 x 10(-7) M, 2 x 10(-7) M/3 x 10(-7)M and 2 x 10(-7) M/4.5 x 109-7) M), while an antagonistic effect was obtained for all higher concentrations of inhibitors. The presence of a non-inhibitory degradation product (phosphorodithioic O,O,S-trimethyl ester) did not affect the inhibition efficiencies of the malathion by-products, malaoxon and isomalathion.  相似文献   

11.
Quadruplicate wells of pig luteal cells were incubated for 24 h in the presence of different concentrations of retinol, beta-carotene (0, 1 x 10(-5), 1 x 10(-6) and 1 x 10(-7) M) or retinoic acid (0, 1 x 10(-6), 1 x 10(-7) and 1 x 10(-8) M). In addition, the responsiveness of luteal cells to LH challenge was also evaluated. Progesterone was assayed in the media. Cell viability was estimated using trypan blue exclusion and showed over 95% viability. In the presence of LH, progesterone content in the medium was increased by 7-fold. As compared to their respective controls, all concentrations of retinoic acid and beta-carotene increased progesterone content in the media. The highest level of stimulation was observed with 1 x 10(-6) M-retinoic acid (5-fold increase) and 1 x 10(-7) M-beta-carotene (10-fold increase). Only 1 x 10(-5) M-retinol stimulated progesterone secretion (over 3-fold). Therefore, retinol, retinoic acid and beta-carotene stimulate progesterone secretion by pig luteal cells in vitro.  相似文献   

12.
Human breast cancer tissue contains enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of estradiol (E(2)) formation. In this tissue, E(2) can be synthesized by two main pathways: (1) sulfatase-transforms estrogen sulfates into bioactive E(2), and the (2) aromatase-converts androgens into estrogens. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization.In the present study, we demonstrated in T-47D and MCF-7 human breast cancer cells that norelgestromin (NGMN) (a metabolite of norgestimate) is a potent inhibitory agent of the estrone sulfatase activity. After 24h incubation of physiological concentrations of E(1)S (5 x 10(-9)mol/l) the inhibitory effect of NGMN at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 43+/-7, 74+/-4 and 97+/-2%, respectively, in T-47D cells; 25+/-4, 57+/-5 and 96+/-2% respectively, in MCF-7 cells. Comparative studies using medroxyprogesterone acetate (MPA) showed that this progestin also has an inhibitory effect on sulfatase activity, but significantly less intense than that of NGMN. The inhibition for MPA at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 31+/-5, 47+/-3 and 61+/-3%, respectively, for T-47D cells; 6+/-3, 20+/-3 and 63+/-4%, respectively, for MCF-7 cells.In conclusion, the present data show that NGMN is a very potent inhibitory agent for sulfatase activity in the hormone-dependent breast cancer cells, resulting in decreased tissue concentration of E(2). The clinical significance of this finding remains to be elucidated.  相似文献   

13.
The addition of 25 mug of protamine sulfate per ml to lysozyme-ethylenediamine-tetraacetic acid spheroplasts of Escherichia coli stimulates transfection not only for T1 phage deoxyribonucleic acid (DNA; Hotz and Mauser, 1969) but also for the following phage DNA species: lambda, 10,000-fold to an efficiency of 10(-3) infective centers per DNA molecule; phiX174 replicative form, 300-fold to an efficiency of 5 x 10(-2); fd replicative form, 300-fold to 10(-6); T7, 300-fold to 3 x 10(-7). Three native phage DNA species were not infective at all in the absence of protamine sulfate but were infective in the presence of protamine sulfate with the following efficiencies: T4, 10(-5); T5, 3 x 10(-6); and P22, 3 x 10(-9). The effect of protamine sulfate is specific for double-stranded DNA. The application of infectivity assays to the study of phage DNA replication, recombination, prophage integration, prophage excision, and interspecies transfection are discussed.  相似文献   

14.
Renal resistance to antidiuretic hormone (ADH) has been speculated to be a mechanism of transient nephrogenic diabetes insipidus occurring during late pregnancy. In order to study possible involvement of ovarian steroids in this mechanism, their effect on cyclic adenosine 3':5'-monophosphate (cAMP) response to arginine vasopressin (AVP) was examined utilizing rat and human renal medullary cells in monolayer culture. In both rat and human cells, estradiol significantly reduced cAMP response to AVP; estradiol at 1.84 x 10(-8) M, 1.84 x 10(-7) M and 1.84 x 10(-6) M decreased cAMP production stimulated by 10(-8) M AVP to 78 +/- 5%, 67 +/- 2% (P less than 0.05) and 52 +/- 1% (P less than 0.001) of the control in rat renal cells, respectively, and in human renal cells the effect of estradiol was comparable to that in rat cells. In rat renal cells, progesterone also reduced cAMP response to AVP dose-dependently; progesterone at 1.59 x 10(-7) M, 1.59 x 10(-6) M and 1.59 x 10(-5) M decreased cAMP production stimulated by 10(-8) M AVP to 87 +/- 1%, 72 +/- 5% (P less than 0.001) and 37 +/- 5% (P less than 0.001) of the control, respectively. On the other hand, corticosterone and dexamethasone at concentrations ranging from 10(-8) M to 10(-5) M and aldosterone at concentrations ranging from 10(-9) M to 10(-5) M did not alter cAMP response to AVP significantly. The suppressive effect of estradiol increased with time until six hours and thereafter it reached a plateau.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In the present study, we explored the effect of the progestin medrogestone on the sulfatase and sulfotransferase activities in the hormone-dependent MCF-7 and T-47D human breast cancer cell lines. After 24 h incubation at 37 degrees C of physiological concentrations of estrone sulfate ([3H]-E1S: 5x10(-9) mol/l), it was observed that this estrogen was converted in a great proportion to E2 in both cell lines. Medrogestone significantly inhibits this transformation, at all the concentrations tested (5x10(-8) to 5x10(-5) mol/l), in both cell lines. The IC50 values were 1.93 micromol/l and 0.21 micromol/l in MCF-7 and T-47D cells, respectively. In another series of studies, after 24 h incubation at 37 degrees C of physiological concentrations of estrone ([3H]-E1: 5x10(-9) mol/l), the sulfotransferase activity was detectable in both cell lines. Estrogen sulfates (ES) are found exclusively in the culture medium, which suggests that as soon as they are formed they are excreted into the medium. Medrogestone has a biphasic effect on sulfotransferase activity in both cell lines. At low doses: 5x10(-8) and 5x10(-7) mol/l, this compound stimulates the enzyme by +73.5 and 52.7%, respectively, in MCF-7, and by 84.5 and 62.6% in T-47D cells. At high concentrations: 5x10(-6) and 5x10(-5) mol/l, medrogestone has no effect on MCF-7 cells, but inhibits the sulfotransferase activity in T-47D cells by -31.4% at 5x10(-5) mol/l. In conclusion, the inhibitory effect provoked by medrogestone on the enzyme involved in the biosynthesis of E2 (sulfatase pathway) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive ES, support a probable anti-proliferative effect of this progestin in breast tissue. Clinical applications of these findings can open new therapeutic possibilities for this disease.  相似文献   

16.
The radiosensitizing effect of five glyoxal derivatives on the survival of TC-SV40 cells has been measured, under aerobic and hypoxic conditions. A toxicity study was previously performed in order to use nontoxic concentrations. The OER for the TC-SV40 cells was 2.74. None of the glyoxylic compounds showed radiosensitizing activity under aerobic conditions while in hypoxia their radiosensitizing factors decreased in the order phenylglyoxylic acid (1.68 at 8 x 10(-3) mole dm-3) greater than phenylglyoxal (1.55 at 5 x 10(-6) mole dm-3) greater than 2-2' furil (1.48 at 5 x 10(-5) mole dm-3) greater than glyoxylic acid (1.39 at 1 x 10(-3) mole dm-3) greater than glyoxal (1.30 at 5 x 10(-5) mole dm-3). The dose-modifying factors were also determined at two equimolar concentrations 5 x 10(-5) and 5 x 10(-6) mole dm-3. A concentration effect was noticed for all the compounds although their relative radiosensitizing activity kept, independently of the concentration, the same order noted above. Glyoxals with aromatic or heterocyclic rings exert a greater radiosensitization than the others. The acidic compounds have less radiosensitizing activity than their aldehydic counterparts. Interaction of these glyoxals with NPSH cellular groups was tested and the low degree of inhibition shows that this mechanism would contribute very little, if any, to the radiosensitization effect.  相似文献   

17.
A series of chalcogenopyrylium dyes were evaluated as modulators/inhibitors of P-glycoprotein (Pgp). Their ability to inhibit verapamil (VER)-dependent ATPase activity (IC(50) values) in lipid-activated, mouse Cys-less mdr3 Pgp was determined. Their ability to promote calcein-AM (CAM) uptake in MDCKII-MDR1 cells and their capacity to be transported by Pgp in monolayers of MDCKII-MDR1 cells were also evaluated. The chalcogenopyrylium dyes promoted CAM uptake with values of EC(50) between 5 x 10(-6) and 3.5 x 10(-5)M and 7 of the 9 dyes examined in transport studies were substrates for Pgp with efflux ratios (P(BA/AB)) between 14 and 390. Binding of three compounds (1-S, 3-S, and 4-S) to Pgp was also assessed by fluorescence. These three thiopyrylium dyes showed increased fluorescence upon binding to Pgp, giving apparent binding constants, K(app), on the order of 10(-7) to 10(-6)M. Compound 8-Te was particularly intriguing since it appeared to influence Pgp at low micromolar concentrations as evidenced by its influence on VER-stimulated ATPase activity (IC(50) of 1.2 x 10(-6)M), CAM uptake (EC(50) of 5.4 x 10(-6)M), as well as [(3)H]-vinblastine transport by Pgp in cells (IC(50) of 4.3 x 10(-6)M) and within inside-out membrane vesicles (IC(50) of 9.6 x 10(-6)M). Yet, Pgp did not influence the distribution of 8-Te in MDCKII-MDR1 monolayers suggesting that 8-Te may bind to an allosteric site.  相似文献   

18.
Phosphoglycerate mutase has been purified from methanol-grown Hyphomicrobium X and Pseudomonas AMI by acid precipitation, heat treatment, ammonium sulphate fractionation, Sephadex G-50 gel filtration and DEAE-cellulose column chromatography. The purification attained using the Hyphomicrobium X extract was 72-fold, and using the Pseudomonas AMI extract, 140-fold. The enzyme purity, as shown by analytical polyacrylamide gel electrophoresis, was 50% from Hyphomicrobium X and 40% from Pseudomonas AMI. The enzyme activity was associated with one band. The purified preparations did not contain detectable amounts of phosphoglycerate kinase, phosphopyruvate hydratase, phosphoglycerate dehydrogenase or glycerate kinase activity. The molecular weight of the enzymic preparation was 32000 +/- 3000. The enzyme from both organisms was stable at low temperatures and, in the presence of 2,3-diphosphoglyceric acid, could withstand exposure to high temperatures. The enzyme from Pseudomonas AMI has a broad pH optimum at 7-0 to 7-6 whilst the enzyme from Hyphomicrobium X has an optimal activity at pH 7-3. The cofactor 2,3-diphosphoglyceric acid was required for maximum enzyme activity and high concentrations of 2-phosphoglyceric acid were inhibitory. The Km values for the Hyphomicrobium X enzyme were: 3-phosphoglyceric acid, 6-0 X 10(-3) M: 2-phosphoglyceric acid, 6-9 X 10(-4) M; 2,3-diphosphoglyceric acid, 8-0 X 10(-6) M; and for the Pseudomonas AMI ENzyme: 3-4 X 10(-3) M, 3-7 X 10(-4) M and 10 X 10(-6) M respectively. The equilibrium constant for the reaction was 11-3 +/- 2-5 in the direction of 2-phosphoglyceric acid to 3-phosphoglyceric acid and 0-09 +/- 0-02 in the reverse direction. The standard free energy for the reaction proceeding from 2-phosphoglyceric acid to 3-phosphoglyceric acid was -5-84 kJ mol(-1) and in the reverse direction +5-81 kJ mol(-1).  相似文献   

19.
D Fleischman  M Denisevich 《Biochemistry》1979,18(23):5060-5066
The guanylate cyclase activity of axoneme--basal apparatus complexes isolated from bovine retinal rods has been investigated. The Mg2+ and Mn2+ complexes of GTP4- serve as substrates. Binding of an additional mole of Mg2+ or Mn2+ per mole of enzyme is required. Among cations which are ineffective are Ca2+, Ni2+, Fe2+, Fe3+, Zn2+, and Co2+. The kinetics are consistent with a mechanism in which binding of Mg2+ or Mn2+ to the enzyme must precede binding of MgGTP or MnGTP. The apparent dissociation constants of the Mg--enzyme complex and the Mn--enzyme complex are 9.5 x 10(-4) and 1.1 x 10(-4) M, respectively. The apparent dissociation constants for binding of MgGTP and MnGTP to the complex of the enzyme with the same metal are 7.9 x 10(-4) and 1.4 x 10(-4) M, respectively. The cyclase activity is maximal and independent of pH between pH 7 and 9. KCl and NaCl are stimulatory, especially at suboptimal concentrations of Mg2+ or Mn2+. Ca2+ and high concentrations of Mg2+ and Mn2+ are inhibitory. Ca2+ inhibition appears to require the binding of 2 mol of Ca2+ per mol of enzyme. The dissociation constant of the Ca2--enzyme complex is estimated to be 1.4 x 10(-6) M2. The axoneme--basal apparatus preparations contain adenylate cyclase activity whose magnitude is 1--10% that of the guanylate cyclase activity.  相似文献   

20.
In order to develop a sensitive pharmacological preparation which would allow the measurement of the inhibitory effects of kinins and substance P (SP) in vascular smooth muscles, several large arteries of the dog were studied in vitro. The common carotid artery was found to be one of the most sensitive preparations to SP and kinins. When contracted with low concentrations of noradrenaline (between 3.0 x 10(-8) and 3.0 x 10(-7) M), this artery responds to SP (6.5 x 10(-11)-6.5 x 10(-9) M) and bradykinin (BK) (8.1 x 10(-11)-9.1 x 10(-8) M) with relaxations that are proportional to the concentrations of the two peptides. SP and BK appear to exert their relaxant effects through the activation of specific receptors as the exposure of the common carotid artery to concentrations of [Leu8]-angiotensin II, propranolol, methysergide, cimetidine, or atropine sufficient to inhibit the effects of the corresponding agonists do not affect the relaxing effect of SP and BK. [Leu8]-des-Arg9-BK (1.0 x 10(-6) M), indomethacin (2.8 x 10(-5) M), and lioresal (4.7 x 10(-5) M) are also inactive. When the dog common carotid artery is desensitized with high concentrations of SP, BK, eledoisin, and physalaemin a cross-desensitization is observed only between SP and physalaemin. These results support the conclusion that SP and kinins act on different receptors. The order of potency of kinins is the following: BK = [Tyr(Me)8]-BK greater than des-Arg9-BK, suggesting that the receptor for kinins is of the B2 type. The order of potency of peptides related to SP is SP greater than C-terminal 4-11 greater than C-terminal hexapeptide 6-11, similar to that observed in other vascular preparations. The results summarized in this paper indicate that the dog common carotid artery is a preparation sensitive to SP and BK and useful for studying the relaxant effect of these two peptides on vascular smooth muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号