首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three acylated cyanidin 3-sambubioside-5-glucosides (1-3) were isolated from the violet-blue flowers of Orychophragonus violaceus, and their structures were determined by chemical and spectroscopic methods. Two of those acylated anthocyanins (1 and 3) were cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-acyl)-beta-D-glucopyranoside]-5-O-(6-O-malonyl-beta-D-glucopyranoside)s, in which the acyl groups were p-coumaric acid for 1, and sinapic acid for 3, respectively. The last anthocyanin 2 was cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-feruloyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside. In these flowers, the anthocyanins 2 and 3 were present as dominant pigments, and 1 was obtained in rather small amounts.  相似文献   

2.
Three acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucosides (1-3) and one non-acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucoside (4) were isolated from the purple-violet or violet flowers and purple stems of Malcolmia maritima (L.) R. Br (the Cruciferae), and their structures were determined by chemical and spectroscopic methods. In the flowers of this plant, pigment 1 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-(beta-D-glucopyranoside) as a major pigment, and a minor pigment 2 was determined to be the cis-p-coumaroyl isomer of pigment 1. In the stems, pigment 3 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-d-glucopyranoside]-5-O-(beta-D-glucopyranoside) as a major anthocyanin, and also a non-acylated anthocyanin, cyanidin 3-O-[2-O-(3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside) was determined to be a minor pigment (pigment 4). In this study, it was established that the acylation-enzymes of malonic acid has important roles for the acylation of 5-glucose residues of these anthocyanins in the flower-tissues of M. maritima; however, the similar enzymatic reactions seemed to be inhibited or lacking in the stem-tissues.  相似文献   

3.
Two triacylated and tetraglucosylated anthocyanins derived from cyanidin were isolated from the flowers of Ipomoea asarifolia and their structures elucidated using chemical, GC, MS and NMR methods (1H and 13C, TOCSY-1D, DQF-COSY, DIFFNOE and HMBC). These complex pigments were found to consist of cyanidin 3-O-[2-O-(6-O-E-caffeoyl-beta-D-glucopyranosyl)]-[6-O-[4-O-(6-O-E-3,5-dihydroxycinnamoyl-beta-D-glucopyranosyl)-E-caffeoyl]-beta-D-glucopyranosyl]-5-O-beta-D-glucopyranoside and cyanidin 3-O-[2-O-(6-O-E-p-coumaroyl-beta-D-glucopyranosyl)]-[6-O-[4-O-(6-O-E-p-coumaroyl-beta-D-glucopyranosyl)-E-caffeoyl]-beta-D-glucopyranosyl]-5-O-beta-D-glucopyranoside.  相似文献   

4.
The structures of 11 acylated cyanidin 3-sophoroside-5-glucosides (pigments 1-11), isolated from the flowers of Iberis umbellata cultivars (Cruciferae), were elucidated by chemical and spectroscopic methods. Pigments 1-11 were acylated with malonic acid, p-coumaric acid, ferulic acid, sinapic acid and/or glucosylhydroxycinnamic acids.Pigments 1-11 were classified into four groups by the substitution patterns of the linear acylated residues at the 3-position of the cyanidin. In the first group, pigments 1-3 were determined to be cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 1, ferulic acid for pigment 2 and sinapic acid for pigment 3. In the second one, pigments 4-6 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 4, ferulic acid for pigment 5 and sinapic acid for pigment 6. In the third one, pigments 7-9 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 7, ferulic acid for pigment 8, and sinapic acid for pigment 9. In the last one, pigments 10 and 11 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were none for pigment 10 and ferulic acid for pigment 11.The distribution of these pigments was examined in the flowers of four cultivars of I. umbellata by HPLC analysis. Pigment 1 acylated with one molecule of p-coumaric acid was dominantly observed in purple-violet cultivars. On the other hand, pigments (9 and 11) acylated with three molecules of hydroxycinnamic acids were observed in lilac (purple-violet) cultivars as major anthocyanins. The bluing effect and stability on these anthocyanin colors were discussed in relation to the molecular number of hydroxycinnamic acids in these anthocyanin molecules.  相似文献   

5.
Shang XY  Wang YH  Li C  Zhang CZ  Yang YC  Shi JG 《Phytochemistry》2006,67(5):511-515
Four acetylated flavonol diglucosides, quercetin 3-O-[2'-O-acetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], quercetin 3-O-[2',6'-O-diacetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], isorhamnetin 3-O-[2'-O-acetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], and quercetin 3-O-[2'-O-acetyl-alpha-l-arabinopyranosyl-(1-->6)-beta-d-glucopyranoside], together with five known flavonol glycosides quercetin 3-O-beta-d-glucopyranoside, kaempferol 3-O-beta-d-glucopyranoside, quercetin 3-O-[beta-d-galactopyranosyl-(1-->6)-glucopyranoside], isorhamnetin 3-O-[beta-d-galactopyranosyl-(1-->6)-beta-d-glucopyranoside], and kaempferol 3-O-[beta-d-glucopyranosyl-(1-->2)-beta-d-glucopyranoside] have been isolated from Meconopsis quintuplinervia. Their structures were determined using chemical and spectroscopic methods including HRFABMS, (1)H-(1)H COSY, HSQC and HMBC experiments.  相似文献   

6.
A novel acylated cyanidin 3-sambubioside-5-glucoside was isolated from the purple-violet flowers of Matthiola longipetala subsp. bicornis (Sm) P. W. Ball. (family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(trans-feruloyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods. In addition, two known acylated cyanidin 3-sambubioside-5-glucosides, cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] and cyanidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] were identified in the flowers.  相似文献   

7.
Steroidal saponins from roots of Asparagus officinalis   总被引:4,自引:0,他引:4  
Huang X  Kong L 《Steroids》2006,71(2):171-176
Sarsasapogenin M (1) and sarsasapogenin N (2), two new oligospirostanosides with a unique aglycone moiety, (25S)-5beta-spirostan-3beta, 17alpha-diol, along with seven known compounds (25S)-5beta-spirostan-3beta-ol-3-O-beta-d-glucopyranosyl-(1,2)-[beta-d-xylopyranosyl-(1,4)]-beta-d-glucopyranoside (3), (25S)-5beta-spirostan-3beta-ol-3-O-beta-d-glucopyranosyl-(1,2)-beta-d-glucopyranoside (4), (25S)-5beta-spirostan-3beta-ol-3-O-alpha-l-rhamnopyranosyl-(1,2)-[alpha-l-rhamnopyranosyl-(1,4)]-beta-d-glucopyranoside (5), (25S)26-O-beta-d-glucopyranosyl-5beta-furost-20 (22)-ene-3beta,26-diol-3-O-beta-d-glucopyranosyl-(1,2)-beta-d-glucopyranoside (6), yamogenin (7), beta-sitosterol (8), and sitosterol-beta-d-glucoside (9) were isolated from the roots of Asparagus officinalis L. Their structures were determined by spectral analysis, including extensive 1D and 2D NMR experiments.  相似文献   

8.
Three anthocyanins were isolated from the red flowers of chenille plant, Acalypha hispida Burm. (Euphorbiaceae) by a combination of chromatographic techniques. Their structures were elucidated mainly by homo- and heteronuclear nuclear magnetic resonance spectroscopy and electrospray mass spectrometry, and supported with complete assignments of 13C NMR resonances. The novel pigment, cyanidin 3-O-(2"-galloyl-6"-O-alpha-rhamnopyranosyl-beta-galactopyranoside) (5%), contains the disaccharide robinoside. The other anthocyanins were identified as cyanidin 3-O-(2"-galloyl-beta-galactopyranoside) (85%), and cyanidin 3-O-beta-galactopyranoside (5%). Anthocyanins acylated with gallic acid have previously been identified in species from the families Nymphaeaceae and Aceraceae, and tentatively in Abrus precatorius (Leguminosae).  相似文献   

9.
Five acylated peonidin glycosides were isolated from the pale gray-purple flowers of a duskish mutant in the Japanese morning glory (Ipomoea nil or Pharbitis nil) as major pigments, along with a known anthocyanin, Heavenly Blue Anthocyanin (HBA). Three of these were based on peonidin 3-sophoroside and two on peonidin 3-sophoroside-5-glucoside as their deacylanthocyanins; both deacylanthocyanins were acylated with caffeic acid and/or glucosylcaffeic acids. By spectroscopic and chemical methods, the structures of the former three pigments were determined to be 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside], 3-O-[2-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-glucopyranoside], and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside] of peonidin. The structures of the latter two pigments were also confirmed as 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside, and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside of peonidin. The mutation affecting glycosylation and acylation in anthocyanin biosynthesis of Japanese morning glory was discussed.  相似文献   

10.
From the fruits of Sambucus canadensis four anthocyanin glycosides have been isolated by successive application of an ion-exchange resin, droplet-counter chromatography and gel filtration. The structure of the novel, major (69.8%) pigment, cyanidin 3-O-[6-O-(E-p-coumaroyl-2-O-(beta-D-xylopyranosyl)-beta-D- glucopyranoside]-5-O-beta-D-glucopyranoside, was determined by means of chemical degradation, chromatography and spectroscopy, especially homo- and heteronuclear two-dimensional NMR techniques. The other anthocyanins were identified as cyanidin 3-sambubioside-5-glucoside (22.7%), cyanidin 3-sambubioside (2.3%) and cyanidin 3-glucoside (2.1%).  相似文献   

11.
Triterpenoid saponins from the fruits and galls of Sapindus mukorossi   总被引:3,自引:0,他引:3  
Huang HC  Wu MD  Tsai WJ  Liao SC  Liaw CC  Hsu LC  Wu YC  Kuo YH 《Phytochemistry》2008,69(7):1609-1616
Six saponins, sapinmusaponin K (1) [hederagenin-3-O-(3-O-acetyl-alpha-L-arabinopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside], sapinmusaponin L (2) [hederagenin-3-O-(4-O-acetyl-alpha-L-arabinopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabino-pyranoside], sapinmusaponin M (3) [hederagenin-3-O-(2,3-O-diacetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside], sapinmusaponin N (4) [hederagenin-3-O-(2,4-O-diacetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside], sapinmusaponin O (5) [3,7,20(S)-trihydroxydammar-24-ene-3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside], and sapinmusaponin P (6) [3,7,20(R)-trihydroxydammar-24-ene-3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-d-glucopyranoside], along with seven known saponins (7-13), were isolated from fruits and the galls of Sapindus mukorossi. Their structures were elucidated by 1D and 2D NMR spectroscopic techniques and acid hydrolysis. Biological evaluation indicated that saponins 1-4 and 7-13 showed moderate cytotoxicity against several human tumor cell lines.  相似文献   

12.
The anthocyanin composition of berries of Maqui [Aristotelia chilensis (Mol.) Stuntz] was determined by HPLC with photodiode array and MS detection. Eight pigments corresponding to the 3-glucosides, 3,5-diglucosides, 3-sambubiosides and 3-sambubioside-5-glucosides of delphinidin and cyanidin were identified, the principal anthocyanin being delphinidin 3-sambubioside-5-glucoside (34% of total anthocyanins). The average total anthocyanin content was 137.6 +/- 0.4mg/100g of fresh fruit (211.9 +/- 0.6 mg/100g of dry fruit). The relative high anthocyanin content and the important presence of polar polyglycosylated derivatives makes the fruits of A. chilensis an interesting source of anthocyanin extracts for food and pharmaceutical uses.  相似文献   

13.
Six acylated delphinidin glycosides (pigments 1-6) and one acylated kaempferol glycoside (pigment 9) were isolated from the blue flowers of cape stock (Heliophila coronopifolia) in Brassicaceae along with two known acylated cyanidin glycosides (pigments 7 and 8). Pigments 1-8, based on 3-sambubioside-5-glucosides of delphinidin and cyanidin, were acylated with hydroxycinnamic acids at 3-glycosyl residues of anthocyanidins. Using spectroscopic and chemical methods, the structures of pigments 1, 2, 5, and 6 were determined to be: delphinidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(acyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were, respectively, cis-p-coumaric acid for pigment 1, trans-caffeic acid for pigment 2, trans-p-coumaric acid for pigment 5 (a main pigment) and trans-ferulic acid for pigment 6, respectively. Moreover, the structure of pigments 3 and 4 were elucidated, respectively, as a demalonyl pigment 5 and a demalonyl pigment 6. Two known anthocyanins (pigments 7 and 8) were identified to be cyanidin 3-(6-p-coumaroyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 7 and cyanidin 3-(6-feruloyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 8 as minor anthocyanin pigments. A flavonol pigment (pigment 9) was isolated from its flowers and determined to be kaempferol 3-O-[6-O-(trans-feruloyl)-β-glucopyranoside]-7-O-cellobioside-4′-O-glucopyranoside as the main flavonol pigment.On the visible absorption spectral curve of the fresh blue petals of this plant and its petal pressed juice in the pH 5.0 buffer solution, three characteristic absorption maxima were observed at 546, 583 and 635 nm. However, the absorption curve of pigment 5 (a main anthocyanin in its flower) exhibited only one maximum at 569 nm in the pH 5.0 buffer solution, and violet color. The color of pigment 5 was observed to be very unstable in the pH 5.0 solution and soon decayed. In the pH 5.0 solution, the violet color of pigment 5 was restored as pure blue color by addition of pigment 9 (a main flavonol in this flower) like its fresh flower, and its blue solution exhibited the same three maxima at 546, 583 and 635 nm. On the other hand, the violet color of pigment 5 in the pH 5.0 buffer solution was not restored as pure blue color by addition of deacyl pigment 9 or rutin (a typical flower copigment). It is particularly interesting that, a blue anthocyanin-flavonol complex was extracted from the blue flowers of this plant with H2O or 5% HOAc solution as a dark blue powder. This complex exhibited the same absorption maxima at 546, 583 and 635 nm in the pH 5.0 buffer solution. Analysis of FAB mass measurement established that this blue anthocyanin-flavonol complex was composed of one molecule each of pigment 5 and pigment 9, exhibiting a molecular ion [M+1] + at 2102 m/z (C93H105O55 calc. 2101.542). However, this blue complex is extremely unstable in acid solution. It really dissociates into pigment 5 and pigment 9.  相似文献   

14.
Twelve anthocyanins (1-12) were isolated from the red flowers of Camellia hongkongensis Seem. by chromatography using open columns. Their structures were elucidated on the basis of spectroscopic analyses, that is, proton-nuclear magnetic resonance, carbon 13-nuclear magnetic resonance, heteronuclear multiple quantum correlation, heteronuclear multiple bond correlation, high resolution electrospray ionization mass and ultraviolet visible spectroscopies. Out of these anthocyanins, a novel acylated anthocyanin, cyanidin 3-O-(6-O-(Z)-p-coumaroyl)-β-galactopyranoside (6), two known acylated anthocyanins, cyanidin 3-O-(6-O-(E)-p-coumaroyl)-β-galactopyranoside (7) and cyanidin 3-O-(6-O-(E)-caffeoyl)-β-galactopyranoside (8), and three known delphinidin glycosides (10-12) were for the first time isolated from the genus Camellia. Furthermore, pigment components in C. japonica L., C. chekiangoleosa Hu and C. semiserrata Chi were studied.The results indicated that the distribution of anthocyanins was differed among these species. Delphinidin glycoside was only detected in the flowers of C. hongkongensis, which is a special and important species in the section Camellia. Based on the characterization of anthocyanins in the section Camellia species, there is a close relationship among these species,and C. hongkongensis might be an important parent for creating new cultivars with bluish flower color.  相似文献   

15.
Three acylated anthocyanins were isolated from the scarlet flowers of Anemone coronaria 'St. Brigid Red' along with a known pigment, pelargonidin 3-lathyroside. The structures of the acylated pigments were based on a pelargonidin 3-lathyroside skeleton acylated at different positions with malonic acid. The first pigment was identified as pelargonidin 3-O-[2-(beta-D-xylopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside], the second was pelargonidin 3-O-[2-O-(beta-D-xylopyranosyl)-6-O-(methyl-malonyl)-beta-D-galactopyranoside], and the third was (6'-O-(pelargonidin 3-O-[2'-O-(beta-D-xylopyranosyl)-beta-D-galactopyranosyl]))((4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-O-tartatryl)malonate.  相似文献   

16.
Two novel diacylated and two known anthocyanins were isolated from violet flowers of Petunia hybrida cv Festival. The new anthocyanins are malvidin 3-O-(6-O-(4-O-(4-O-(6-O-feruloyl-beta-D-glucopyranosyl)-E-p-coumaroyl)-alpha-rhamnosyl)-beta-D-glucopyranoside)-5-beta-D-glucopyranoside and malvidin 3-O-(6-O-(4-O-(4-O-(6-O-E-p-coumaroyl-beta-D-glucopyranosyl)-E-p-coumaroyl)-alpha-rhamnosyl)-beta-D-glucopyranoside)-5-beta-D-glucopyranoside. The two known pigments are the 3-caffeoylglucosyl-p-coumaroylrutinoside-5-glucosides of malvidin and petunidin.  相似文献   

17.
Acylated anthocyanins from red radish (Raphanus sativus L.)   总被引:5,自引:0,他引:5  
Twelve acylated anthocyanins were isolated from the red radish (Raphanus sativus L.) and their structures were determined by spectroscopic analyses. Six of these were identified as pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-beta-D-glucopyranosyl]-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-caffeoyl-2-O-(6-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-p-coumaroyl-2-O-(6-(E)-caffeoyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-(6-(E)-caffeoyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-p-coumaroyl-2-O-(6-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), and pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-(2-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside).  相似文献   

18.
Azuma T  Tanaka Y  Kikuzaki H 《Phytochemistry》2008,69(15):2743-2748
Three phenolic glycosides were isolated together with two known flavonol glycosides from the H2O-soluble fraction of rhizomes of Kaempferia parviflora. Their structures were determined to be rel-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranoside] (1), its rel-5aS,10bR isomer (2), and (2R,3S,4S)-3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranosyl]-3'-O-methyl-ent-epicatechin-(2alpha-->O-->3,4alpha-->4)-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside] (3). The structures were elucidated on the basis of analyses of chemical and spectroscopic evidence.  相似文献   

19.
A bean aphid, Megoura crassicauda, which feeds selectively on the plant genus Vicia (Fabaceae), was found to be stimulated to probe an extract solution of the host plant, narrowleaf vetch, Vicia angustifolia L., depositing characteristic stylet sheaths on a parafilm membrane. Two acylated flavonol glycosides were isolated as the specific probing stimulants from the extracts and characterized as quercetin 3-O-alpha-L-arabinopyranosyl-(1-->6)-[2"-O-(E)-p-coumaroyl]-beta-D-glucopyranoside and quercetin 3-O-alpha-L-arabinopyranosyl-(1-->6)-[2"-O-(E)-p-coumaroyl]-beta-D-galactopyranoside. A mixture of these compounds in the same equivalency strongly induced the probing response from M. crassicauda, suggesting their kairomonal roles during host recognition.  相似文献   

20.
Alkaloids from Portulaca oleracea L   总被引:10,自引:0,他引:10  
Xiang L  Xing D  Wang W  Wang R  Ding Y  Du L 《Phytochemistry》2005,66(21):2595-2601
Five alkaloids (oleraceins A, B, C, D and E) were isolated from Portulaca oleracea L., and their structures determined by spectroscopic methods as 5-hydroxy-1-p-coumaric acyl-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-beta-D-glucopyranoside, 5-hydroxy-1-ferulic acyl-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-beta-D-glucopyranoside, 5-hydroxy-1-(p-coumaric acyl-7'-O-beta-D-glucopyranose)-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-beta-D-glucopyranoside, 5-hydroxy-1-(ferulic acyl-7'-O-beta-D-glucopyranose)-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-beta-D-glucopyranoside and 8,9-dihydroxy-1,5,6,10b-tetrahydro-2H-pyrrolo[2,1-a]isoquinolin-3-one, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号