首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of atrial natriuretic factor (ANF)-like immunoreactivity in the central nervous system of the frog Rana ridibunda was examined by the indirect immunofluorescence technique, using an antiserum against synthetic ANF (Arg101-Tyr126). Immunoreactive cell bodies were principally found in the dorsal and medial pallium, the medial septal nucleus, the ventrolateral and anteroventral areas of the thalamus, the lateral forebrain bundle, the posterolateral thalamic nuclei, the preoptic nucleus, the dorsal infundibular nucleus, and the anteroventral tegmentum nucleus of the mesencephalon. Numerous cell bodies and a very dense fiber bundle were visualized in the interpeduncular nucleus. All the areas mentioned above contained a high density of immunoreactive fibers. In addition, the amygdala, the infundibular nucleus, the median eminence, and most of the areas of the mesencephalon contained a moderate number of ANF-positive nerve processes. In the frog pituitary, fibers and nerve terminals were found in the peripheral zone of the neural lobe. The intermediate and anterior lobes of the frog pituitary were totally devoid of ANF immunoreactivity. These results indicate that ANF-like material is widely distributed in the frog brain and that ANF may be involved in various brain functions including neuroendocrine regulations.  相似文献   

2.
The distribution of immunoreactive alpha-melanocyte-stimulating hormone (alpha-MSH) in the central nervous system and pituitary of the elasmobranch fish Scyliorhinus canicula was determined by the indirect immunofluorescence and the peroxidase-antiperoxidase methods using a highly specific antiserum. Perikarya containing alpha-MSH-like immunoreactivity were localized in the dorsal portion of the posterior hypothalamus, mainly in the tuberculus posterioris and sacci vasculosus nuclei. Immunoreactive alpha-MSH cell bodies were found in the dorsal wall and ventral region of the caudal part of the tuberculum posterioris. These structures were densely innervated by fine beaded immunoreactive fibers. Some alpha-MSH immunoreactive cells were occasionally detected in the ventral part of the nucleus periventricularis. Scattered cell bodies and fibers were also observed in the dorsal wall of the posterior recess. Outside the hypothalamus very few fibers were detected in the dorsal thalamus and mesencephalon. No immunoreactivity was found in any other parts of the brain. The alpha-MSH immunoreactive material localized in the brain was characterized by combining high-performance liquid chromatography (HPLC) analysis and radioimmunological detection. Brain and pituitary extracts exhibited displacement curves which were parallel to that obtained with synthetic alpha-MSH. The concentrations of alpha-MSH immunoreactive material were determined in 5 different regions of the brain. The highest concentration was found in the hypothalamus. HPLC analysis resolved two major forms of immunoreactive alpha-MSH in the hypothalamus, which had been same retention times as des-N alpha-acetyl-alpha-MSH and its sulfoxide derivative. These results provide the first evidence for the presence of alpha-MSH-like peptides in the fish brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Summary Corticotropin-releasing factor (CRF) was localized in the brains of two passerine species, the European starling (Sturnus vulgaris) and the song sparrow (Melospiza melodia), by means of immunohistochemistry. The hypothalamic distribution of this peptide in these species includes a complex of immunoreactive perikarya observed in the paraventricular nucleus (PVN), in both its medial and lateral divisions. Nerve fibers were also seen running from these areas to the anterior median eminence (AME) where a terminal field is apparent. A wide variety of extra-hypothalamic nuclei containing CRF-immunoreactive cells and fibers were identified. An apparent CRF terminal field can be visualized in the lateral septum. A dense fiber plexus is present in the nucleus accumbens (Ac) and more caudally in the nucleus of the stria terminalis (nST). In colchicinepretreated animals, it was revealed that these areas also contain CRF-stained perikarya. The pattern of CRF immunoreactivity in the Ac-nST complex is continuous, with no distinction apparent between the nuclei. The medial preoptic area (mPOA) and the adjacent diagonal band of Broca contain CRF-fibers, while cells are apparent in the mPOA. In the mesencephalon, cells were visualized in the midbrain central gray; a terminal field and scattered positively stained perikarya were found in areas more ventral to the central grey that are adjacent to the third cranial nerve. Scattered cells were also seen at the border of the nucleus intercollicularis-nucleus mesencephalicus lateralis, pars dorsalis complex. In contrast to mammalian studies, no immunoreactive nerve fibers or perikarya were observed in telencephalic areas homologous to the mammalian neocortex. These studies confirm the presence of a CRF path-way regulating pituitary function and suggest a broad role played by CRF as a neuromodulator or neurotransmitter in autonomic and possibly behavioral activities in these species.  相似文献   

4.
Neurons sending fibers to different loci of the suprasylvian gyrus (SSG) of the porpoise(Phocaena phocaena) cortex were located in the thalamus by retrograde horseradish peroxidase transport and fluorescent tracing techniques. Horseradish peroxidase injection into the anterior section of the suprasylvian gyrus led to retrograde labelling of neurons in the lateral portion of the ventrobasal complex of nuclei and the ventroposteroinferior nucleus. A group of labelled cells was found in the ventral section of the main medial geniculate nucleus. Injecting bisbenzimide into different loci of the medial suprasylvian gyrus also led to retrograde labelling of neurons belonging to the ventral division of the main medial geniculate nucleus. Somewhat lower numbers of labelled cells were found in the inferior nucleus of the pulvinar. Small groups of labelled neurons were also found in the lateral nucleus of the pulvinar, the medioventral nucleus of the medial geniculate body, and the posterior complex of nuclei. A similar distribution of labelled cells was also observed after injecting bisbenzimide into the more caudal portion of the gyrus, although the location of labelled cells in the ventral division of the main medial geniculate nucleus and the lower pulvinar nucleus were shifted in a lateral direction.A. N. Severtsov Institute of Animal Evolutionary Moprhology and Ecology, Academy of Sciences of the USSR, Moscow. National University, Singapore. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 529–539, July–August, 1989.  相似文献   

5.
Summary The distribution of immunoreactive arginine vasotocin (AVT-ir) was determined in the brain of the lizard Anolis carolinensis. Cells and fibers containing AVT-ir were found in the medial septal region, lamina terminalis, lateral forebrain bundle, preoptic area, supraoptic nucleus, anterior hypothalamus, paraventricular nucleus, periventricular nucleus, arcuate nucleus, and ventromedial nucleus of the thalamus. Occasional AVT-ir cells were found in the interpeduncular nucleus. Fibers containing AVT-ir were found in the cortex, around the olfactory ventricle, in the diagonal band of Broca, amygdala area, dorsal ventricular ridge, striatum, nucleus accumbens, septum, ventromedial hypothalamus, lateral hypothalamus, medial forebrain bundle, median eminence, pars nervosa, nucleus of the solitary tract, locus coeruleus, cerebellar cortex (granular layer), dorsal part of the nucleus of the lateral lemniscus, substantia nigra, and myelencephalon. The intensity of AVT-ir staining was, in general, greater in males than in females. Comparison of AVT-ir distribution in A. carolinensis with those previously published for other reptilian species revealed species-specific differences in distribution of AVT.  相似文献   

6.
The distribution of three types of arginine vasotocin (AVT) receptors in the brain and pituitary of the newt Cynops pyrrhogaster, namely, the V1a-, V2-, and V3/V1b-type receptors, was studied by means of in situ hybridization and immunohistochemistry. mRNA signals and immunoreactive cells for the V1a-type receptor were observed in the telencephalon (mitral layer of the olfactory bulb, dorsal and medial pallium, lateral and medial amygdala, bed nucleus of the decussation of the fasciculus telencephali, bed nucleus of the stria terminalis), diencephalon (anterior preoptic area, magnocellular preoptic nucleus, suprachiasmatic nucleus, ventral thalamus, dorsal and ventral hypothalamic nucleus), mesencephalon (tegmentum, interpeduncular nucleus), and medulla oblongata (median reticular formation, nucleus motorius tegmenti). Cells expressing the V2-type receptor were found in the telencephalon (medial pallium, lateral and medial amygdala, bed nucleus of the decussation of the fasciculus telencephali), and mesencephalon (tegmentum trigemini and facialis). In the paraphysis (possibly the main site of cerebrospinal fluid production), only V2-type receptor mRNA signal and immunoreactivity were detected. V3/V1b-type receptor mRNA was expressed in the diencephalon (dorsal hypothalamic nucleus, nucleus tuberculi posterioris), mesencephalon (tegmentum, interpeduncular nucleus), and medulla oblongata (raphe nucleus), whereas V3/V1b-type-receptor-like immunoreactivity was scarcely detectable in the entire brain. The V3/V1b-type receptor was predominantly expressed in the anterior pituitary. V3/V1b-type receptor and proopiomelanocortin mRNAs were co-localized in the distal lobe of the pituitary. This is the first report of the distribution of three types of AVT receptor in the brain and pituitary of non-mammalian vertebrates.  相似文献   

7.
This study investigated the retinal projections of the adult Formosan rock monkey by monocular injection of radioactive proline and fucose. We found that the retinofugal fibers terminated bilaterally in the suprachiasmatic, pregeniculate, lateral geniculate, pretectal complex, pulvinar nucleus, superior colliculus, dorsal and lateral terminal nuclei of the accessory optic system. More crossed retinal terminations were observed, with the exception that the suprachiasmatic nucleus received almost equally of both retinal projections. The existence of the retinal projection to the medial terminal nucleus of the accessory nucleus was in doubt. In the geniculate nucleus, the retinal fibers terminated contralaterally in layers 1, 4 and 6; and ipsilaterally in 2, 3 and 5. In the superior colliculus, most retinal fibers were aggregated superficially in a band located in the contralateral striatum griseum superficialis of the superior colliculus, and had few gaps on the ipsilateral one. The present investigation shows that the Formosan rock monkey has a similar pattern of optic fiber distribution to that of other macaques.  相似文献   

8.
The distribution of neuropeptide Y (NPY) in the central nervous system of the frog Rana ridibunda was determined by immunofluorescence using a highly specific antiserum. NPY-like containing perikarya were localized in the infundibulum, mainly in the ventral and dorsal nuclei of the infundibulum, in the preoptic nucleus, in the posterocentral nucleus of the thalamus, in the anteroventral nucleus of the mesencephalic tegmentum, in the part posterior to the torus semicircularis, and in the mesencephalic cerebellar nucleus. Numerous perikarya were also distributed in all cerebral cortex. Important tracts of immunoreactive fibers were found in the infundibulum, in the preoptic area, in the lateral amygdala, in the habenular region, and in the tectum. The cerebral cortex was also densely innervated by NPY-like immunoreactive fibers. A rich network of fibers was observed in the median eminence coursing towards the pituitary stalk. Scattered fibers were found in all other parts of the brain except in the cerebellum, the nucleus isthmi and the torus semicircularis, where no immunoreactivity could be detected. NPY-immunoreactive fibers were observed at all levels of the spinal cord, with particularly distinct plexus around the ependymal canal and in the distal region of the dorsal horn. At the electron microscope level, NPY containing perikarya and fibers were visualized in the ventral nuclei of the infundibulum, using the peroxidase-antiperoxidase and the immunogold techniques. NPY-like material was stored in dense core vesicles of 100 nm in diameter. A sensitive and specific radioimmunoassay was developed. The detection limit of the assay was 20 fmole/tube. The standard curves of synthetic NPY and the dilution curves for acetic acid extracts of cerebral cortex, infundibulum, preoptic region, and mesencephalon plus thalamus were strictly parallel. The NPY concentrations measured in these regions were (pmole/mg proteins) 163±8, 233±16, 151±12 and 60±13, respectively. NPY was not detectable in cerebellar extracts. After Sephadex G-50 gel filtration of acetic acid extracts from whole frog brain, NPY-like immunoreactivity eluted in a single peak. Reverse phase high performance liquid chromatography (HPLC) and radioimmunoassay were used to characterize NPY-like peptides in the frog brain. HPLC analysis revealed that infundibulum, preoptic area and telencephalon extracts contained a major peptide bearing NPY-like immunoreactivity. The retention times of frog NPY and synthetic porcine NPY were markedly different. HPLC analysis revealed also the existence, in brain extracts, of several other minor components cross-reacting with NPY antibodies. These results provide the first evidence for the presence of NPY in the brain of a non-mammalian chordate and indicate that the structure of NPY is preserved among the vertebrate phylum. The abundance of NPY producing neurons in the hypothalamus and telencephalon suggests that this peptide may play both neuroendocrine and neurotransmitter functions in amphibians.  相似文献   

9.
Neuropeptide Y-like immunoreactivity was studied in the thalamus of the cat using an indirect immunoperoxidase method. The densest network of immunoreactive fibers was observed in the nucleus (n.) paraventricularis anterior. In the anterior, intralaminar and midline thalamic nuclei, as well as in the n. geniculatum medialis, n. geniculatum lateralis, n. habenularis lateralis, n. medialis dorsalis, n. lateralis posterior and n. pulvinar a low density of neuropeptide Y-like immunoreactive fibers was observed. Neuropeptide Y-like fibers were totally absent in the n. ventralis lateralis, n. ventralis medialis, n. ventralis postero-medialis and n. ventralis postero-lateralis. In addition, neuropeptide Y-like perikarya were found in the n. parafascicularis, n. suprageniculatus, n. geniculatum lateralis ventralis, n. medialis dorsalis and n. lateralis posterior.  相似文献   

10.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

11.
N S Krishna  N K Subhedar 《Peptides》1992,13(1):183-191
The anatomical distribution of FMRFamide-like immunoreactivity in the forebrain and pituitary of the catfish, Clarias batrachus, was investigated. Immunoreactive cells were observed in the ganglion cells of the nervus terminalis (NT) and in the medial olfactory tracts. In the preoptic area, FMRFamide-containing perikarya were restricted to the lateral preoptic area, paraventricular subdivision of the nucleus preopticus, nucleus suprachiasmaticus and nucleus preopticus periventricularis posterior. In the postoptic area, some cells of the nucleus postopticus lateralis and nucleus of the horizontal commissure showed moderate immunoreactivity. In the tuberal area, immunoreactivity was observed in few cells of the nucleus hypothalamicus ventralis and nucleus arcuatus hypothalamicus (NAH). Nucleus ventromedialis thalami was the only thalamic nucleus with FMRFamide immunoreactivity. Immunoreactive processes were traceable from the NT through the medial as well as lateral olfactory tracts into the telencephalon and the area ventralis telencephali pars supracommissuralis (Vs). Further caudally, the immunoreactive fibers could be traced into discrete areas, including habenular and posterior commissures, neurohypophysis and pituitary; isolated fibers were also observed in the pineal stalk. A loose network of immunoreactive processes was observed in the olfactory bulbs and the entire telencephalon, with higher densities in some areas, including Vs. A dense plexus of immunoreactive fibers was seen in the pre- and postoptic areas and around the paraventricular organ, while relatively few were observed in the thalamus. A high concentration of fiber terminals was found in the caudal tuberal area.  相似文献   

12.
Summary The distribution of serotonin in the hypothalamus and the mesencephalon of guinea-pigs pretreated with both pargyline and L-tryptophan was investigated immunohistochemically using monoclonal antibodies to 5-HT. 5-HT-positive fibers and varicosities appeared distributed throughout the hypothalamus. Some areas showed a greater density of immunoreactivity: the suprachiasmatic nucleus, the region of the supraoptic crest, the area of the medial forebrain bundle, the ventral part of the nucleus ventromedialis, the median eminence and the ventral part of the mammillary bodies. 5-HT nerve fibers were also scattered in the posterior lobe of the pituitary. An extensive supraependymal plexus of immunoreactive axons was observed in most ventricular regions. No 5-HT positive cell bodies were present in the hypothalamus of the guinea-pig under our experimental conditions, whereas an intense serotonin immunoreactivity was detected in perikarya of the brain stem. 5-HT cell bodies were found predominantly in the raphe region including the nucleus raphe dorsalis and raphe medianus, nucleus interpeduncularis, reticular formation and dorsal area of the medial lemniscus.  相似文献   

13.
We have investigated the presence of ACTH, -MSH and β-endorphin, three peptides which derive from the multifunctional precursor protein proopiomelanocortin (POMC) in the brain of the rainbow trout Salmo gairdneri. Using both the indirect immunofluorescence and peroxidase-antiperoxidase techniques, a discrete group of positive cells was identified in the hypothalamus, within the anterior part of the nucleus lateralis tuberis. -MSH-containing neurons represented the most abundant immunoreactive subpopulation. Coexistence of -MSH, ACTH and β-endorphin was observed in the lateral part of the nucleus. ACTH- and β-endorphin-containing cells were mainly distributed in the rostral and caudal regions of the nucleus. In the medial portion of the nucleus lateralis tuberis, numerous cells were only stained for -MSH. Moderate to dense plexuses of immunoreactive fibers were observed in the ventral thalamus and the floor of the hypothalamus. Some of these fibers projected towards the pituitary. The concentrations of ACTH, -MSH and β-endorphin-like immunoreactivities were measured in microdissected brain regions by means of specific radioimmunoassays. Diencephalon, mesencephalon and medulla oblongata extracts gave dilution curves which were parallel to standard curves. The highest concentrations of POMC-derived peptides were found in the diencephalon (-MSH: 4.28±0.43 ng/mg prot.; ACTH: 1.08±0.09 ng/mg prot.; β-endorphin: 1.02±0.1 ng/mg prot.), while lower concentrations were detected in the mesencephalon, medulla oblongata and telencephalon. The present results demonstrate that various peptides derived from POMC coexist within the same cell bodies of the fish hypothalamus. Taken together, these data suggest that expression and processing of POMC in the fish brain is similar to that occurring in pituitary melanotrophs.  相似文献   

14.
Antarctic notothenioids have developed unique freezing-resistance adaptations, including brain diversification, to survive in the subzero waters of the Southern Ocean surrounding Antarctica. In this study we have investigated the anatomical distribution of neuropeptide tyrosine (NPY)-like immunoreactive elements in the brain of the Antarctic fish Trematomus bernacchii, by using an antiserum raised against porcine NPY. Perikarya exhibiting NPY-like immunoreactivity were observed in distinct regions of the brain. The most rostral group of immunoreactive perikarya was found in the telencephalon, within the entopeduncular nucleus. In the diencephalon, three groups of NPY-like immunoreactive perikarya were found in the hypothalamus. Two groups of positive cell bodies were found in distinct populations of the preoptic nucleus, whereas the other group was found in the nucleus of the lateral recess. More caudally, NPY immunoreactivity was detected in large neurons located in the subependymal layers of the dorsal tegmentum of the mesencephalon, medially to the torus semicircularis. NPY-like immunoreactive nerve fibres were more widely distributed throughout the telencephalon to the rhombencephalon. High densities of nerve fibres and terminals were observed in several regions of the telencephalon, olfactory bulbs, hypothalamus, tectum of the mesencephalon and in the ventral tegmentum of the rhombencephalon. The distribution of NPY-like immunoreactive structures suggests that, in Trematomus, this peptide may be involved in the control of several brain functions, including olfactory activity, feeding behaviour, and somatosensory and visual information. In comparison with other neuropeptides previously described in the brain of Antarctic fish, NPY is more widely distributed. Our data also indicate the existence of differences in the brain distribution of NPY between Trematomus and other teleosts. In contrast with previous results reported in other fish, Trematomus contains positive fibres in the olfactory bulbs and immunoreactive perikarya in the nucleus of the lateral recess, whereas NPY-immunopositive cell bodies are absent in the thalamus and rhombencephalon, and no NPY immunoreactivity is present in the pituitary. These differences could be related to the Antarctic ecological diversity of notothenioids living at subzero temperatures.  相似文献   

15.
The distribution of natriuretic peptide-like immunoreactivity was investigated in the brain of Bufo marinus and compared with arginine vasotocin-like immunoreactivity using fluorescence immunohistochemistry. The antisera used were rabbit anti-porcine brain natriuretic peptide, which recognises the three main structural forms of natriuretic peptides, and guinea-pig antivasopressin, which recognises arginine vasotocin. Natriuretic peptide-like immunoreactive fibres were observed in many regions of the brain, being densest in the preoptic/hypothalamic region of the diencephalon and the interpeduncular nucleus of the mesencephalon. Natriuretic peptide-like immunoreactive cell bodies were observed in the dorsal and medial pallium, the medial amygdala, the preoptic nucleus, the ventral hypothalamus, the nucleus posterodorsalis tegmenti mesencephali, and the interpeduncular nucleus. No natriuretic peptide-like immunoreactivity was seen in the pituitary gland. The distribution of arginine vasotocin-like immunoreactivity was similar to that described previously for other amphibian species. Numerous immunoreactive cell bodies were present in the preoptic nucleus whilst immunoreactive fibres were observed in the preoptic/hypothalamic region as well as in extrahypothalamic regions such as the medial amygdala and the medial pallium. Double-labelling immunohistochemistry revealed no colocalisation of arginine vasotocin-like and natriuretic peptide-like immunoreactivities in the same neural elements. The results suggest that natriuretic peptides and arginine vasotocin have distinct distributions in the brain but that natriuretic peptide-like immunoreactive fibres in the hypothalamus could influence the activity of arginine vasotocin-like immunoreactive cell bodies.  相似文献   

16.
用免疫组化 ABC 技术,观察了八肽缩胆囊素(CCK—8),甲硫氨酸脑啡肽(M—ENK)免疫反应(IR)结构在猫延髓吻侧腹侧区的分布。结果表明:CCK—8—IR 细胞分内、外两群:内侧群细胞分布于巨细胞网状核(NGc)、旁巨细胞外侧核(PGL)以及下橄榄核背外侧的网状结构,从吻侧向尾侧逐渐减少;外侧群细胞分布于外侧网状核(LRN)及其背内侧网状结构,从吻侧向尾侧逐渐增多。在中缝苍白核(Rpa)、中缝大核(Rm)仅见少量 CCK—8—IR 细胞。察见 CCK—8—IR纤维主要有3种:粗、细和终末前纤维。CCK—8—IR 纤维在面后核、疑核以及二核紧邻的网状结构最为密集;在 PGL 密度中等;在 NGc、LRN、Rpa 和 Rm 稀疏分布。M—ENK—IR 细胞和纤维分布于 Rpa、Rm、NGc、PGL 和 LRN,此外在面后核、疑核以及二核紧邻的网状结构可见较密集的纤维。  相似文献   

17.
The distribution of cells immunoreactive for the molluscan tetrapeptide FMRFamide in the brain and the pituitary of Eigenmannia was investigated immunohistochemically by the use of the peroxidase-antiperoxidase (PAP) technique and unlabelled antibodies. FMRFi neurons were located in the ganglion of the nervus terminalis at the rostroventral side of the bulbus olfactorius. FMRFi perikarya were also found in a dorsomedial diencephalic nucleus, in the nucleus ventromedialis, in some liquor-contacting neurons of the nucleus lateralis tuberis and of the nucleus recessus lateralis and posterior. The perikarya of the midbrain pre-pacemaker nucleus were only weakly immunoreactive for FMRFamide while large FMRFi neurons (T-cells) occurred in lamina VI of the torus semicircularis, in the brain stem, in dorsal and medial layers of the lobus lineae lateralis posterior (LLLp) and in the medullary electric organ pacemaker nucleus (pm). FMRFi fibers and nerve endings were found in the bulbus olfactorius, in medial areas of the telencephalon, and rather densely in the rostral diencephalon. Ventrocaudally to most of the hypothalamic nuclei the occurrence of immunoreactive fibres increased; many coursed to the pituitary through the pituitary stalk. FMRFi fibres also appeared in the deep layers of the tectum opticum, in the torus semicircularis, in the medial and lateral medulla and below the pacemaker nucleus. Wherever FMRFamide-immunoreactivity occurred fibres and nerve endings could be found in close contact with blood vessels.  相似文献   

18.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

19.
J K Rao  H Hu  C Prasad  A Jayaraman 《Peptides》1987,8(2):327-334
The distribution pattern of alpha-melanocyte stimulating hormone-like immunoreactivity (alpha-MSH-Li) was studied in cats using avidin-biotin modification of immunocytochemical method. Cell bodies containing alpha-MSH-Li were observed in the medial basal hypothalamus, especially in the infundibular nucleus, the lateral hypothalamus and near zona incerta. Fibers with alpha-MSH-Li extended beyond the hypothalamus, into the paraventricular nucleus of the thalamus, rostral amygdala, periaqueductal gray, locus ceruleus, parabrachial nucleus and medial nucleus of the nucleus tractus solitarius. Axons with alpha-MSH-Li were also seen diffusely in various cortical areas, but more extensively in the limbic cortical regions. The distribution pattern of the cell bodies and fibers containing alpha-MSH-Li bears several similarities to that seen in rats, but differs in that the alpha-MSH-Li was not observed in cell bodies in locations other than the medial basal and lateral hypothalamus.  相似文献   

20.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号