首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of lignin in vascular plants is regulated both developmentally and environmentally. In the inflorescence stems of Arabidopsis, lignin is mainly deposited in the walls of xylem cells and interfascicular fiber cells during normal plant growth and development. The mechanisms controlling the spatial deposition of lignin remain unknown. By screening ethyl methanesulfonate-mutagenized populations of Arabidopsis, we have isolated two allelic elp1 (ectopic deposition of lignin in pith) mutants with altered lignin deposition patterns. In elp1 stems, lignin was ectopically deposited in the walls of pith parenchyma cells in addition to its normal deposition in the walls of xylem and fiber cells. Lignin appeared to be deposited in patches of parenchyma cells in the pith of both young and mature elp1 stems. The ectopic deposition of lignin in the pith of elp1 stems was accompanied by an increase in the activities of enzymes in the lignin biosynthetic pathway and with the ectopic expression of caffeoyl coenzyme A O-methyltransferase in pith cells. These results indicate that the ELP1 locus is involved in the repression of the lignin biosynthetic pathway in the pith. Isolation of the elp1 mutants provides a novel means with which to study the molecular mechanisms underlying the spatial control of lignification.  相似文献   

2.
Indoleacetic acid (IAA)-oxidase from both secondary phloem and xylem was dependent on 2,4-dichlorophenol for activity, and was enhanced by addition of Mn2+. The pH optimum was 6.0 from both tissues. IAA-oxidase and its inhibitors were distributed differently in the secondary phloem and secondary xylem of carrot root. In the phloem a high IAA-oxidase activity was distributed uniformly along the radius but in the xylem a somewhat lower concentration decreased from the cambium. IAA-oxidase inhibitor in the phloem increased exponentially from a very low concentration near the cambium, whereas in the xylem an appreciable concentration was present near the cambium, decreasing linearly with distance from the cambium. Longitudinal gradients in the xylem parallel studies by other workers with the greatest IAA-destroying capacity present in older tissues. In the xylem inhibitor decreased and IAA-oxidase increased from the root apex. In the phloem IAA-oxidase was uniform, whereas the inhibitor increased in older tissue.

The IAA-oxidase inhibitors in phloem and xylem may be different. In the xylem the IAA-oxidase inhibitor may be a lignin precursor present in young cells which disappears as lignification proceeds. In the phloem IAA-oxidase reacting with endogenous IAA appears to form a physiologically active product.

  相似文献   

3.
Z H Ye 《Plant physiology》1997,115(4):1341-1350
Caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) was previously shown to be associated with lignification in both in vitro tracheary elements (TEs) and organs of zinnia (Zinnia elegans). However, it is not known whether this is a general pattern in dicot plants. To address this question, polyclonal antibodies against zinnia recombinant CCoAOMT fusion protein were raiseed and used for immunolocalization in several dicot plants. The antibodies predominantly recognized a protein band with a molecular mass of 28 kD on western analysis of tissue extracts from zinnia, forsythia (Forsythia suspensa), tobacco (Nicotiana tabacum), alfalfa (Medicago sativa), and soybean (Glycine max). Western analyses showed that the accumulation of CCoAOMT protein was closely correlated with lignification in in vitro TEs of zinnia. Immunolocalization results showed that CCoAOMT was localized in developing TEs of young zinnia stems and in TEs, xylem fibers, and phloem fibers of old stems. CCoAOMT was also found to be specifically associated with all lignifying tissues, including TEs, xylem fibers, and phloem fibers in stems of forsythia, tobacco, alfalfa, soybean, and tomato (Lycopersicon esculentum). The presence of CCoAOMT was evident in xylem ray parenchyma cells of forsythia, tobacco, and tomato. In forsythia and alfalfa, pith parenchyma cells next to the vascular cylinder were lignified. Accordingly, marked accumulation of CCoAOMT in these cells was observed. Taken together, these results showed a close association of CCoAOMT expression with lignification in dicot plants. This supports the hypothesis that the CCoAOMT-mediated methylation branch is a general one in lignin biosynthesis during normal growth and development in dicot plants.  相似文献   

4.
黄连(Coptis chinensis)是毛茛科著名药材,该文研究了黄连体内黄连素在组织器官中的分布规律和根尖屏障结构特征。在白光和荧光显微镜下,组织器官中黄连素在蓝色激发光下自发黄色荧光,黄连素-苯胺兰对染研究细胞壁凯氏带和木质化,苏丹7B染色栓质层,间苯三酚-盐酸染色木质化。结果表明:黄连不定根初生结构为维管柱、内皮层、皮层、外皮层和表皮组成;次生结构以次生木质部为主、次生韧皮部和木栓层组成。黄连根茎初生结构由角质层,皮层和维管柱组成;次生结构由木栓层、皮层和维管柱组成,以皮层和维管柱为主。叶柄结构为髓、含维管束的厚壁组织层、皮层和角质层。黄连不定根的屏障结构初生结构时期由栓质化和木质化的内皮层、外皮层;次生结构时期为木栓层组成;根状茎的为角质层和木栓层。黄连素主要沉积分布在不定根和茎的木质部,叶柄的厚壁组织层,木质部和厚壁组织是鉴别黄连品质的重要部位。黄连根尖外皮层及早发育,同时初生木质部有黄连素沉积结合,可能造成水和矿质吸收和运输的阻碍,也是黄连适应阴生环境的重要原因。  相似文献   

5.
DUNCAN  E. J. 《Annals of botany》1973,37(5):981-985
The stem of Ipomoea batatas (L.) Lam. is characterized by thepossession of a ring of bicollateral, leaftrace bundles. Lacticifersoccur in the pith, in the parenchyma between neighbouring islandsof medullary phloem, and in the cortex. The xylem groups become united by the activity of the inter-fascicularcambium. The production of a certain amount of secondary xylemtakes place before the production of secondary phloem begins.The former is produced more extensively in some areas than inothers, so that the original symmetry of the vascular cylinderis lost. The phellogen originates in the cells of the epidermis. When the stem is attacked by the larvae of Megastes grandalisGuen., which remove most of the internal tissues, anomalousgrowth takes place as a result of the activity of accessorycambia, which develop in the primary cortex, the secondary phloem,and the phelloderm. Residual parenchyma of the pith and/or xylemundergoes hyperplasia to produce a callus tissue which linesthe cavity made by the larvae.  相似文献   

6.
Daedalea flavida Lév. causes considerable damage to bamboos. Bamboo tissues become soft, discoloured and fibrous. The pathogen causes considerable decay of internodes (about 22%) and rhizomes (about 38%). The pathogen attacks the cells of vascular bundles, bundle sheath sclerenchyma and phloem cells; it does not attack epidermis, hypodermis, and peripheral sclerenchyma tissues. Fungal hyphae grow longitudinal and transverse in host tissues. The parasite decomposes both cellulose and lignin.  相似文献   

7.
Boron Mobility and Nutrition in Broccoli (Brassica oleracea var. italica   总被引:2,自引:0,他引:2  
SHELP  B. J. 《Annals of botany》1988,61(1):83-91
Broccoli (Brassica oleracea var. italica cv Premium Crop) plantswere germinated in soil, transferred to vermiculite three weekslater and grown in the glasshouse, then either supplied continuouslywith boron levels ranging from 0.0 (deficient) to 12.5 (toxic)mg l–1 of nutrient solution or transferred from 2.5 to0.0 mg B l–1 at the initiation of inflorescence development.At commercial maturity the concentrations of various inorganicand organic solutes in phloem exudates and xylem saps, as wellas plant characteristics and elemental composition of the variousplant parts, were determined. Under deficient B levels leaf midrib and stem corkiness wereevident, together with signs of stem pith breakdown, symptomswhich resemble the initiation of the hollow stem disorder. Thexylem sap B concentration declined by about 50 % when B wasnot supplied or was removed after a period of adequate supply;the phloem concentration was unaffected. Also, the decreasingB concentration gradients from mature transpiring tissues toyoung developing sinks disappeared. Therefore, it is concludedthat when B is deficient, it is retranslocated from source leavesin the phloem stream supplying the developing leaves and inflorescence.The data also suggested that at toxic levels B undergoes extensivelateral transfer, probably from xylem to xylem, thereby enhancingthe B concentration of developing sinks. The B regime influenced dry-matter partitioning, retranslocationof some elements, and the synthesis and distribution of aminoacids and sugars, reflecting the general nature of B involvementin plant processes. Brassica oleracea var., italica, broccoli, phloem, mobility, retranslocation, boron nutrition, transport fluids, concentration gradients  相似文献   

8.
为了从显微结构上进一步探讨虉草(Phalaris arundinacea L.)的抗旱耐涝性及与利用的关系,于2011年采用常规石蜡切片技术,对其根、茎叶3种营养器官进行解剖观察。结果表明,虉草根的结构自外而内依次为表皮、皮层、维管束鞘、初生韧皮部和初生木质部;茎由表皮、基本组织和维管束构成;叶片内部结构可分为表皮、叶肉和叶脉3部分。根皮层大的细胞间隙和气腔,初生木质部的后生大导管和茎基本组织解体形成的髓腔都是虉草良好的通气组织,是其耐水淹的主要显微特征。茎、叶片角质化的表皮和叶表皮所含的丰富泡状细胞组是虉草具有抗旱性的主要解剖结构特征。叶肉细胞排列紧密且只有少量气孔分布于叶片下表皮,这样的结构可减少蒸腾;叶肉细胞富含叶绿体,增强光合作用,获得更多的同化产物,确保了植株在干旱条件下也有足够的光合产物来维持正常的生理活动。茎、叶维管束部分大量的木纤维起到支撑作用。虉草根的皮层和维管柱部分、茎的基本组织和维管束部分、叶的叶脉部分都含有大面积的厚壁细胞,厚壁细胞中含有丰富的粗纤维和木质素。丰富的粗纤维、木质素等成分则是虉草能成为新能源燃料植物的必备条件。  相似文献   

9.
10.
Changes in the levels of ascorbic acid (AA), its oxidized form, dehydroascorbic acid (DHA), and uronic acids as initial precursors for the AA synthesis were studied as related to the degree of xylem and phloem cell development in the course of early and late wood formation in the trunks of Scots pine (Pinus sylvestris L.). The cells of mature and conducting phloem, cambial zone, differently developed cells in the zones of cell enlargement and maturation were obtained by successive scraping tissue layers from trunk segments of 20–25-year-old trees; tissue identification was checked anatomically and histochemically. The contents of compounds tested were calculated per dry weight and per cell basis. We found great differences in the contents of AA and DHA and also in their ratio in dependence of the wood type developing in the pine trunks during growth period and on the stage of differentiation of xylem and phloem cells. Changes in the AA content during xylem cell differentiation were accompanied by changes in the content of uronic acids. The amounts of AA, DHA, and uronic acids were the highest at the stage of early lignification and reduced with tracheid maturation. The AA to DHA ratio changed differently in the course of early and late xylem lignification. It reduced from the start of lignification to the formation of early mature xylem and, in contrast, increased in mature late wood; this indicates a difference in the level of redox processes in these tissues.  相似文献   

11.
 It has previously been shown (D.R. Gang et al., 1999, J Biol Chem 274: 7516–7527) that the most abundant protein in the secondary xylem of poplar (Populus trichocarpa cv. `Trichobel') is a phenylcoumaran benzylic ether reductase (PCBER), an enzyme involved in lignan synthesis. Here, the distribution and abundance of PCBER in poplar was studied at both the RNA and protein level. The cellular expression pattern was determined by immunolocalization of greenhouse-grown plants as well as of a field-grown poplar. Compared to other poplar tissues, PCBER is preferentially produced in the secondary xylem of stems and roots and is associated with the active growth period. The protein is present in all cells of the young differentiating xylem, corresponding to the zone of active phenylpropanoid metabolism and lignification. In addition, PCBER is located in young differentiating phloem fibers, in xylem ray parenchyma, and in xylem parenchyma cells at the growth-ring border. Essentially the same expression pattern was observed in poplars grown in greenhouses and in the field. The synthesis of PCBER in phenylpropanoid-synthesizing tissues was confirmed in a bending experiment. Induction of PCBER was observed in the pith of mechanically bent poplar stems, where phenylpropanoid metabolism is induced. These results indicate that the products of PCBER activity are synthesized mainly in lignifying tissues, suggesting a role in wood development. Received: 28 September 1999 / Accepted: 15 March 2000  相似文献   

12.
应用植物解剖学、组织化学及植物化学方法对白鲜营养器官根、茎、叶的结构及其生物碱的积累进行了研究。结果显示:(1)白鲜根的次生结构以及茎和叶的结构类似一般双子叶植物;白鲜多年生根主要由周皮、次生韧皮部、维管形成层以及次生木质部组成,根次生韧皮部中可见大量的淀粉、草酸钙簇晶、韧皮纤维以及油细胞;茎由表皮、皮层、维管组织和髓组成;叶由表皮、栅栏组织、海绵组织和叶脉组成;在茎和叶初生韧皮部的位置均分布有韧皮纤维,在叶表皮上分布有头状腺毛和非腺毛;在茎和叶紧贴表皮处分布有分泌囊。(2)组织化学分析结果显示:在白鲜多年生根中,生物碱类物质主要分布在周皮、次生韧皮部、维管形成层和木薄壁细胞中;在茎中,生物碱主要分布在表皮、皮层、韧皮部、木薄壁细胞及髓周围薄壁细胞中;在叶中,生物碱主要分布在表皮细胞、叶肉组织和维管组织的薄壁细胞;此外在分泌囊和头状腺毛中亦含有生物碱类物质。(3)植物化学结果显示,秦岭产白鲜根皮/白鲜皮、根木质部、茎和叶中白鲜碱含量分别为0.041%、0.012%、0.004%和0.002%,其中木质部中白鲜碱含量和其他部分地区白鲜皮中白鲜碱含量类似。研究表明,在秦岭产白鲜营养器官中,除根皮/白鲜皮外,在根木质部亦含有大量的白鲜碱,且在茎和叶中亦含有一定的白鲜碱,具有潜在的开发利用价值。  相似文献   

13.
《Flora》2006,201(7):555-569
We investigated the anatomical and chemical characteristics of the foliar vascular bundles in four ecotypes of common reed (Phragmites communis Trin.) inhabiting the desert region of northwest China: swamp reed (SR), low-salt meadow reed (LSMR), high-salt meadow reed (HSMR), and dune reed (DR). The cell walls of the vascular systems of all four ecotypes exhibited bright autofluorescence. Compared to SR, the three terrestrial ecotypes, LSMR, HSMR and DR, had higher percentages of bundle sheath cell areas, lower percentages of xylem and phloem areas, lower xylem/phloem ratios, and higher frequencies of leaf veins. In addition to differences in the autofluorescence intensity and the morphology of the detached cell walls of the vascular bundle sheath, the three terrestrial ecotypes also exhibited anatomical differences in the outerface tangential walls of the bundle sheath and higher frequencies of pit fields in the walls in comparison to SR. The Fourier transform infrared (FTIR) microspectroscopy spectra of the vascular bundle cell walls differed greatly among the tissues of the different ecotypes as well as within different tissues within each ecotype. Histochemical methods revealed that although pectins were present in all bundle tissue cell walls, large amounts of unesterified pectin were present in the phloem cell walls, especially in the salt reed ecotypes LSMR and HSMR, and large quantities of highly methyl-esterified pectin were present in the xylem and sclerenchyma cell walls of the SR and DR ecotypes. Differences were observed in the lignification and suberization of the xylem and sclerenchyma cell walls of the four ecotypes, but the phloem and bundle sheath cell walls were generally similar. These results suggest that the adaptation of common reed, a hydrophytic species, to saline or drought-prone dunes triggers changes in the anatomical and chemical characteristics of the foliar vascular bundle tissues. These alterations, including higher percentages of bundle sheath areas and lower percentages of xylem and phloem areas and their ratios, changes in the chemical compositions and modifications of the cell walls of different vascular bundle tissues, and differences in the deposition of major cell wall components in the walls of different vascular bundle tissues, could contribute to the high resistance of reeds to extreme habitats such as saline and drought-prone dunes.  相似文献   

14.
Alfalfa Stem Tissues: Cell-wall Development and Lignification   总被引:4,自引:0,他引:4  
Alfalfa stems contain a variety of tissues with different patternsof cell-wall development. Development of alfalfa cell wallswas investigated after histochemical staining and with polarizedlight using light microscopy and scanning electron microscopy.Samples of the seventh internode, from the base of stems grownon cut stems, were harvested at five defined stages of developmentfrom early internode elongation through to late maturity. Internodeseven was elongating up to the third sample harvest and internodediameter increased throughout the entire sampling period. Chlorenchyma,cambium, secondary phloem, primary xylem parenchyma and pithparenchyma stem tissues all had thin primary cell walls. Pithparenchyma underwent a small amount of cell-wall thickeningand lignification during maturation. Collenchyma and primaryphloem tissues developed partially thickened primary walls.In contrast to a recent report, the formation of a ring shaped,lignified portion of the primary wall in a number of cells inthe exterior part of the primary phloem was found to precedethe deposition of a thick, non-lignified secondary wall whichwas degradable by rumen microbes. In numerous xylem fibres fromthe fourth harvest date onwards, an additional highly degradablesecondary wall layer was deposited against a previously depositedlignified and undegradable secondary wall. The pattern of lignificationobserved in alfalfa stem tissues suggests that polymerizationof monolignols by peroxidases at the luminal border of the primarycell wall creates an impermeable zone which restricts lignificationof the middle lamella region of tissues with thick primary walls.Copyright1998 Annals of Botany Company Alfalfa,Medicago sativaL., stem tissue, cell wall, development, lignification, degradation.  相似文献   

15.
The localisation of plum pox virus (PPV) in stem and petiole tissues of nine susceptible apricot cultivars and GF305 peach seedling has been studied. From stem and petioles consecutive transverse sections spaced at 1 mm were made and tissue sections printed onto nitrocellulose membrane. The resulting prints were probed with a specific antibody for plum pox virus, followed by a rabbit anti-goat antibody conjugated with horse radish peroxidase, in order to localise the virus within the tissues. In stems the virus was mainly present in xylem and pith. The possible presence of the virus in the sclerenchyma is discussed. In petioles the virus was present in epidermis and parenchymas, but not in vessels. The probable movement through the xylem and from cell to cell has been shown.  相似文献   

16.
Transverse sections of immature and mature sugarcane internodes were investigated anatomically with white and fluorescence light microscopy. The pattern of lignification and suberization was tested histo-chemically. Lignification began in the xylem of vascular bundles and progressed through the sclerenchymatic bundle sheath into the storage parenchyma. Suberization began in parenchyma cells adjacent to vascular bundle sheaths and spread to the storage parenchyma and outer sheath cells. In mature internodes most of the storage parenchyma was lignified and suberized to a significant degree, except in portions of walls of isolated cells. The pattern of increasing lignification and suberization in maturing internodes more or less paralleled an increase of sucrose in stem tissue. In mature internodes having a high sucrose concentration, the vascular tissue was surrounded by thick-walled, lignified and suberized sclerenchyma cells. The apoplastic tracer dyes triso-dium 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS) and amido black 10 B, fed into cut ends of the stalk, wereconfined to the vascular bundles in all internodes above the one that was cut — with no dye apparently in storage parenchyma tissue. Thus both structural and experimental evidence is consistent with vascular tissue being increasingly isolated from the storage parenchyma as maturation of the tissue proceeds. We conclude that in mature internodes the pathway for sugars from the phloem to the storage parenchyma is symplastic. The data suggest that an increasingly greater role for a symplastic pathway of sugar transfer occurs as the tissue undergoes lignification/suberization.  相似文献   

17.
18.
The distribution of 14C from xylem-borne [14C]glutamine, the major nitrogen compound moving in xylem sap of cottonwood (Populus deltoides Bartr. ex Marsh), was followed in rapidly growing shoots with a combination of autoradiographic, microautoradiographic, and radioassay techniques. Autoradiography and 14C analyses of tissues showed that xylem-borne glutamine did not move with the transpiration stream into mature leaves. Instead, most of it was transferred from xylem to phloem in the upper stem and then translocated to young developing tissues. Microautoradiography showed that metaxylem parenchyma, secondary xylem parenchyma, and rays were the major areas of uptake from xylem vessels in the stem. Accumulation in phloem (high 14C concentrations in sieve tubes) took place in internodes subtending recently mature leaves. Little 14C from xylem-borne glutamine was found in phloem of mature leaves, which indicates restricted retransport of glutamine that did enter the leaf. In the primary tissues of the upper stem, most 14C was found in the phloem. Cottonwood stems have an efficient uptake and transfer system that enhances glutamine movement to developing tissues of the upper stem.  相似文献   

19.
The hypothesis that auxin (IAA) and gibberellic acid (GA3) control the formation of lignin is confirmed for the primary phloem fibers and for the secondary xylem in the stem of Coleus blumel Benth. Indoleacetic acid alone, or a combination of high IAA/low GA3 (w/w), induced short phloem fibers with thick secondary walls, that contained lignin rich in syringyl units (high ratio of syringyl/guaiacyl). On the other hand, a combination of high GA3/low IAA (w/w), which promoted the differentiation of long phloem fibers with thin walls, decreased the relative content of the syringyl units (low syringyl/guaiacyl ratio). In the secondary xylem, these hormonal treatments yielded only slight changes in the noncondensed monomeric guaiacyl units, confirming the relative stability of the guaiacyl lignification pattern in this tissue. In the xylem, indoleacetic acid alone, or a combination of high IAA/low GA3 induced lignin poor in syringyl units (low syringyl/guaiacyl ratio). A combination of high GA3/low IAA promoted a relatively slight increase in syringyl yield, indicating greater responsiveness of the syringyl lignification pattern to growth regulators. The possible functional and technological significance of our results is discussed.  相似文献   

20.
The cambial tissues of a Populus balsamifera, Balsam poplar clone were studied during a growth season. The Klason and acid-soluble lignin contents were determined as well as the carbohydrate monomer distribution and the protein content. Both the phloem and the xylem sides of the cambial region were examined. The samples were analyzed by thioacidolysis and structures of dimeric products were determined by mass spectrometry after desulphuration. Chemical analysis of samples during the growth season was combined with microscopy of embedded specimens that showed the state of cell differentiation at the time of sampling. In spring and early summer, growth is very rapid and the intention was to collect tissue in which exclusively the middle lamella/primary cell wall had begun to lignify. The Klason lignin, protein content and carbohydrate monomer distribution showed that all the specimens from the cambial tissues sampled during a growth season contained predominantly middle lamella and primary walls; except for the developing xylem sampled in August where the carbohydrate composition showed that secondary walls were present. Thioacidolysis showed that the lignin from the cambial tissues had more condensed structures than the lignin from the reference balsam poplar clone wood. More guaiacyl than syringyl units were detected and mass spectrometry showed that the cambial tissues contained more lignin structures with end-groups than the reference sample. These results suggest that lignification in the cambial layer and early developing xylem may take place predominantly in a bulk fashion during the summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号