首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of single-strand breaks (ssb) and double-strand breaks (dsb) of PM2 phage DNA by several structurally related bleomycin (BLM) analogues was studied by gel electrophoresis. BLM A2 and BLM B2 produced a comparable extent of dsb. In various experiments, BLM A2 and BLM B2, at 22-41 ng/mL, degraded 50% of the form I DNA into 33-38% form II and 12-17% form III DNA. BLM B1' produced ssb and dsb at a ratio similar to that of BLM A2, but both at a rate less than half that of BLM A2. Phleomycin (PLM) D1 induced an equivalent amount of ssb but only one-eighth of dsb induced by BLM B2. The relatively lower extent dsb production for PLM D1 was observed either in borate buffer (pH 9.5) or in Tris-HCl buffer (pH 7.5) and in the presence or absence of exogenous Fe(II). Deamido-BLM A2 produced ssb to an extent approximately half that of BLM A2 and dsb to less than one-eighth that of BLM A2. The following conclusions were drawn. (1) BLM analogues produced ssb and dsb to different extents and ratios. (2) The ratio of dsb to ssb varied depending on the analogue, indicating a lack of a direct correlation between ssb and dsb. (3) The extent of ssb and dsb was affected by modifications on both the C- and N-terminal half-molecules of BLM: modification of either the N-terminal amide or the bithiazole greatly reduced dsb, whereas changes in structure or charge in the C-terminal amine affected ssb and dsb to a similar extent.  相似文献   

2.
Supercircular gamma phage DNA with 10 bromouracils/100 thymine bases, irradiated with 313 nm light in Tris buffer and sedimented on alkaline and neutral gradients, showed 4.6 alkali-labile bonds per true single-strand break, in agreement with Hewitt and Marburger (1975 Photochem. Photobiol. 21:413). The same DNA irradiated in Escherichia coli host cells showed about the same number of breaks in alkaline gradients for equal fluence, but only 0.5 alkali-labile bond per true break. Similarly, E. coli DNA with bromouracil irradiated in the cells showed only 10--20% more breaks when denatured with 0.1 M NaOH than under neutral conditions with 9 M sodium perchlorate at 50 degrees C. These results show that true single-strand breaks occur more frequently than alkali-labile bonds after ultraviolet irradiation of DNA containing bromouracil in cells.  相似文献   

3.
DNA double-strand breaks caused by replication arrest.   总被引:34,自引:1,他引:33       下载免费PDF全文
B Michel  S D Ehrlich    M Uzest 《The EMBO journal》1997,16(2):430-438
We report here that DNA double-strand breaks (DSBs) form in Escherichia coli upon arrest of replication forks due to a defect in, or the inhibition of, replicative DNA helicases. The formation of DSBs was assessed by the appearance of linear DNA detected by pulse-field gel electrophoresis. Processing of DSBs by recombination repair or linear DNA degradation was abolished by mutations in recBCD genes. Two E. coli replicative helicases were tested, Rep, which is essential in recBC mutants, and DnaB. The proportion of linear DNA increased up to 50% upon shift of rep recBTS recCTS cells to restrictive temperature. No increase in linear DNA was observed in the absence of replicating chromosomes, indicating that the formation of DSBs in rep strains requires replication. Inhibition of the DnaB helicase either by a strong replication terminator or by a dnaBTS mutation led to the formation of linear DNA, showing that blocked replication forks are prone to DSB formation. In wild-type E. coli, linear DNA was detected in the absence of RecBC or of both RecA and RecD. This reveals the existence of a significant amount of spontaneous DSBs. We propose that some of them may also result from the impairment of replication fork progression.  相似文献   

4.
5.
Escherichia coli dam mutants are sensitized to the cytotoxic action of base analogs, cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while their mismatch repair (MMR)-deficient derivatives are tolerant to these agents. We showed previously, using pulse field gel electrophoresis (PFGE), that MMR-mediated double-strand breaks (DSBs) are produced by cisplatin in dam recB(Ts) cells at the non-permissive temperature. We demonstrate here that the majority of these DSBs require DNA replication for their formation, consistent with a model in which replication forks collapse at nicks or gaps formed during MMR. DSBs were also detected in dam recB(Ts) ada ogt cells exposed to MNNG in a dose- and MMR-dependent manner. In contrast to cisplatin, the formation of these DSBs was not affected by DNA replication and it is proposed that two separate mechanisms result in DSB formation. Replication-independent DSBs arise from overlapping base excision and MMR repair tracts on complementary strands and constitute the majority of detectable DSBs in dam recB(Ts) ada ogt cells exposed to MNNG. Replication-dependent DSBs result from replication fork collapse at O(6)-methylguanine (O(6)-meG) base pairs undergoing MMR futile cycling and are more likely to contribute to cytotoxicity. This model is consistent with the observation that fast-growing dam recB(Ts) ada ogt cells, which have more chromosome replication origins, are more sensitive to the cytotoxic effect of MNNG than the same cells growing slowly.  相似文献   

6.
7.
8.
We have developed a high efficiency system in which mammalian extracts join DNA double-strand breaks with non-complementary termini. This system has been used to obtain a large number of junction sequences from a range of different break-end combinations, allowing the elucidation of the joining mechanisms. Using an extract of calf thymus it was found that the major mechanism of joining was by blunt-end ligation following removal or fill-in of the single-stranded bases. However, some break-end combinations were joined through an efficient mechanism using short repeat sequences and we have succeeded in separating this mechanism from blunt-end joining by the biochemical fractionation of extracts. Characterization of activities and sequence data in an extensively purified fraction that will join ends by the repeat mechanism led to a model where joining is initiated by 3' strand invasion followed by pairing to short repeat sequences close to the break site. Thus the joining of double-strand breaks by mammalian extracts is achieved by several mechanisms and this system will allow the purification of the factors involved in each by the judicial choice of the non-complementary ends used in the assay.  相似文献   

9.
10.
DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity.  相似文献   

11.
Visual quantification of DNA double-strand breaks in bacteria.   总被引:2,自引:0,他引:2  
In this paper, we describe a method for the visualization of double-strand breaks in a single electrostretched Escherichia coli DNA molecule. We also provide evidence that electrostretched or migrated DNA under neutral microgel electrophoresis conditions is made up of individual chromosomes. Using the neutral microgel electrophoresis technique, DNA migration (stretching) was measured and the number of DNA double-strand breaks were counted following exposure of E. coli cells to 0, 12.5, 25, 50, or 100 rad of X-rays. The use of an intense fluorescent dye, YOYO and custom-made slides have helped us in visualizing individual bacterial DNA molecules. Bacterial DNA appears similar in structure compared to electrostretched DNA from human lymphocytes. We were able to detect changes in DNA migration (stretching) induced by an X-ray dose as low as 12.5 rad and an increase in the number of DNA breaks induced by a dose as low as 25 rad. The extent of DNA migration and number of breaks were directly correlated to X-ray dosage.  相似文献   

12.
13.
We analyzed the mechanism of recombination-dependent DNA replication in bacteriophage T4-infected Escherichia coli using plasmids that have sequence homology to the infecting phage chromosome. Consistent with prior studies, a pBR322 plasmid, initially resident in the infected host cell, does not replicate following infection by T4. However, the resident plasmid can be induced to replicate when an integrated copy of pBR322 vector is present in the phage chromosome. As expected for recombination-dependent DNA replication, the induced replication of pBR322 required the phage-encoded UvsY protein. Therefore, recombination-dependent plasmid replication requires homology between the plasmid and phage genomes but does not depend on the presence of any particular T4 DNA sequence on the test plasmid. We next asked whether T4 recombination-dependent DNA replication can be triggered by a double-strand break (dsb). For these experiments, we generated a novel phage strain that cleaves its own genome within the nonessential frd gene by means of the I-TevI endonuclease (encoded within the intron of the wild-type td gene). The dsb within the phage chromosome substantially increased the replication of plasmids that carry T4 inserts homologous to the region of the dsb (the plasmids are not themselves cleaved by the endonuclease). The dsb stimulated replication when the plasmid was homologous to either or both sides of the break but did not stimulate the replication of plasmids with homology to distant regions of the phage chromosome. As expected for recombination-dependent replication, plasmid replication triggered by dsbs was dependent on T4-encoded recombination proteins. These results confirm two important predictions of the model for T4-encoded recombination-dependent DNA replication proposed by Gisela Mosig (p. 120-130, in C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget (ed.), Bacteriophage T4, 1983). In addition, replication stimulated by dsbs provides a site-specific version of the process, which should be very useful for mechanistic studies.  相似文献   

14.
We examined DNA double-strand-break-induced mutations in the endogenous adenine phosphoribosyl-transferase (APRT) gene in cultured Chinese hamster ovary cells after exposure to restriction endonucleases. PvuII, EcoRV, and StuI, all of which produce blunt-end DNA double-strand breaks, were electroporated into CHO-AT3-2 cells hemizygous at the APRT locus. Colonies of viable cells containing mutations at APRT were expanded, and the mutations that occurred during break repair were analyzed at the DNA sequence level. Restriction enzyme-induced mutations consisted of small deletions of 1 to 36 bp, insertions, and combinations of insertions and deletions at the cleavage sites. Most of the small deletions involved overlaps of one to four complementary bases at the recombination junctions. Southern blot analysis revealed more complex mutations, suggesting translocation, inversion, or insertion of larger chromosomal fragments. These results indicate that blunt-end DNA double-strand breaks can induce illegitimate (nonhomologous) recombination in mammalian chromosomes and that they play an important role in mutagenesis.  相似文献   

15.
Initiation of meiotic recombination by double-strand DNA breaks in S. pombe   总被引:18,自引:0,他引:18  
A J Klar  L M Miglio 《Cell》1986,46(5):725-731
Mitotic gene conversion and reciprocal recombination have recently been shown to be efficiently initiated by double-strand DNA breaks (DSBs) in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. We tested whether DSBs could also initiate meiotic recombination at the mat1 locus in S. pombe. The mat1 switching-mechanism-generated DSB found in mitotically growing cells can be repaired without mat1 switching, since strains deleted for both donor loci (mat2-P and mat3-M) have the break but do not produce inviable cells. A (mat1-P X mat1-M) cross produced a high frequency (20%) of 3:1 gene conversions of mat1 in meiotic tetrads. Gene conversion events were associated with the recombination of flanking markers. Strains lacking the DSB failed to convert. Thus, the DSB at mat1 promotes efficient meiotic recombination in fission yeast.  相似文献   

16.
The rejoining of double-strand breaks in DNA by human cell extracts.   总被引:24,自引:11,他引:13       下载免费PDF全文
P North  A Ganesh    J Thacker 《Nucleic acids research》1990,18(21):6205-6210
A double-strand DNA break was introduced at a specific site within the lacZ gene of plasmid pUC18 using one of several restriction enzymes, and the plasmid exposed to nuclear extracts from human cell lines. Physical rejoining of DNA was monitored by Southern analysis after gel separation, and the fidelity of rejoining by expression of the lacZ gene after bacterial transformation with the treated plasmid. Breaks at the SalI and EcoRI sites were rejoined by extracts to form circular monomers, but the efficiency of rejoining was much higher at the SalI site. Measurement of rejoining at several adjacent sites having different types of termini, consistently showed a range of efficiencies with 5' 4-base greater than 3' 4-base overhangs and 4-base greater than 2-base greater than no overhang. Similar efficiencies were found for nuclear extracts from transformed cell lines, both from a 'normal' individual and an ataxia-telangiectasia (A-T) patient, and from a non-transformed normal cell culture. In contrast at some sites, especially those with a low rejoin efficiency, the fidelity of rejoining was very much lower for the A-T extracts than for normal cell extracts. Mis-rejoining was, however, unrelated to rejoin efficiency at other sites, suggesting that factors such as the exact sequence at the break site on the molecule may also influence the fidelity of rejoining.  相似文献   

17.
Single-strand breaks (ssb) in opposite strands of DNA can be sufficiently near that a double-strand break (dsb) results. A theory is presented by which the maximum number h of base pairs which cannot prevent double-strand breakage can be determined from the rates of production of ssb and dsb. The assumptions required to derive the necessary equations as well as the range of validity of the equations are discussed in detail. In the experiments ssb and dsb were produced by x-irradiation in buffers which do not eliminate indirect effects and were measured by analytical ultracentrifugation. Values of h have been determined in low and high ionic strength and in low ionic strength over a range of temperatures. The values, 2.64 and 15.8, were obtained for high and low ionic strength, respectively.  相似文献   

18.
DNA双链断裂修复与重症联合免疫缺陷   总被引:1,自引:0,他引:1  
Wang KY  Zhao YH  Li WG 《生理科学进展》2008,39(2):182-184
DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs).  相似文献   

19.
Induction of DSBs in the diploid yeast, Saccharomyces cerevisiae, was measured by pulsed-field gel electrophoresis (PFGE) after the cells had been exposed on membrane filters to a variety of energetic heavy ions with values of linear energy transfer (LET) ranging from about 2 to 11,500 keV/microm, (241)Am alpha particles, and 80 keV X rays. After irradiation, the cells were lysed, and the chromosomes were separated by PFGE. The gels were stained with ethidium bromide, placed on a UV transilluminator, and analyzed using a computer-coupled camera. The fluorescence intensities of the larger bands were found to decrease exponentially with dose or particle fluence. The slope of this line corresponds to the cross section for at least one double-strand break (DSB), but closely spaced multiple breaks cannot be discriminated. Based on the known size of the native DNA molecules, breakage cross sections per base pair were calculated. They increased with LET until they reached a transient plateau value of about 6 x 10(-7) microm(2) at about 300-2000 keV/microm; they then rose for the higher LETs, probably reflecting the influence of delta electrons. The relative biological effectiveness for DNA breakage displays a maximum of about 2.5 around 100-200 keV/microm and falls below unity for LET values above 10(3) keV/microm. For these yeast cells, comparison of the derived breakage cross sections with the corresponding cross section for inactivation derived from the terminal slope of the survival curves shows a strong linear relationship between these cross sections, extending over several orders of magnitude.  相似文献   

20.
Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号