首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TwoH-2 d mutants,H-2 dm2 (H-2L loss mutation) andH-2dm1 (gainplus-loss mutation involving bothH-2L andH-2D) were evaluated for any change in the immunogenicity of marrow stem cells. Grafts of 2 or 4 × 106 BALB/c(C) or BALB/c-H-2dm2 (C-H-2 dm 2) marrow cells were accepted by lethally irradiated B10.D2(H-2 d ) recipients and were rejected by irradiated B10(H-2 b ) recipients. Moreover, both (B6 × C)F1 and (B6 × C-H-2 dm 2)F1 mice, as irradiated recipients, resisted the growth of parental-strain B6(H-2 b ) marrow cells but accepted grafts from C or C-H-2 dm 2 parental-strain donors. Thus, theH-2 mutation involvingH-2L but notH-2D did not affect the expression ofH-2 d -associated Hemopoietic or Hybrid(Hh) antigens of marrow stem cells. Grafts of 2 to 8 × 106 B10.D2 or B10.D2-H-2 dm 1 marrow cells were rejected by B10.BR(H-2 k ) and B6 hosts and were accepted by B10.D2 hosts. However, B10.D2-H-2 dm 1 marrow cells grew to a much greater extent than B10.D2 cells in irradiated (B6 × B10.D2)F1 or (B6 × B10.D2-H-2 dm 1)F1 host mice. Therefore, theH-2 dm 1 mutation has altered the expression of Hh antigens at least quantitatively, resulting in a relative loss of hybrid resistance with the retention of Hh determinants recognized by allogeneic recipient mice which are notH-2 d . Since the Hh determinants of B10.D2 marrow cells have been mapped 16 cM to the right ofH-2, this mutation atH-2D/H-2L may have affected a regulatory gene.  相似文献   

2.
We have studied the influence of DBA/2 non-H-2 antigens on the lethal graft-versus-host reaction (GVHR) developed across an H-2 barrier. (DBA/2 x B10.D2)F1 x B10.D2 (H-2 d) backcross (BC) mice were typed for their allelic constitution at nine genetically independent chromosome markers and used as individual cell donors simultaneously for two to three (DBA/2 X B10.D2)F1 recipients incompatible for DBA/2 non-H-2 antigens alone and two to three (DBA/2 x B10.BR)F1 recipients incompatible for DBA/2 non-H-2 antigens and H-2k. The results showed that, when compared with that developed in a control group incompatible for H-2 kalone [B10.D2(B10.D2xB10.BR)F1], the GVHR mortality seen in the presence of an additional incompatibility for DBA/2 non-H-2 antigens [(DBA/2 X B10.BR)F1recipients] is significantly delayed but only in female mice. An analysis of individual BC donors indicated that this protective effect of DBA/2 non-H-2 antigens correlates with incompatibility for gene(s) linked to the Pgm-1 chromosome marker. In contrast, incompatibility for gene(s) linked to Mod-1 and Es-3 markers accelerates GVHR mortality, but only in male mice. Finally, the results obtained with (DBA/2 x B10.D2)F1 and (DBA/2 x B10.BR)F1 recipients were compared; they showed that the intensity of the GVHR developed by cells from individual BC donors against a given set of DBA/2 non-H-2 antigens correlates well with that developed by the same BC donor against the same set of non-H-2 antigens plus H-2k. We conclude that certain non-H-2 genes (and antigens) can modulate the intensity of the GVHR developed across an H-2 barrier. The number of such genes is probably great; their effects are strong and complex, and can be sex-dependent.  相似文献   

3.
When B10.D2 (H-2d) mice are immunized with lymphoid cells from C57B1/10 (H-2 d ) and their antisera tested against B10.A (H-2 a ) target cells, only antibodies to H-2.5 are measured. The same is true for immunization of DBA/2 (H-2 d ) mice when their antisera are absorbed with B10.D2 cells prior to testing. Irrespective of the dose of immunogen administered, the primary hemagglutinin response of B10.D2 mice is significantly lower than that of DBA/2 mice and (B10.D2 × DBA/2)F1 hybrids, but the secondary responses are similar. The low responsiveness of B10.D2 mice appears to be determined by a single dominant gene with incomplete penetrance; the gene is not linked to eitherH- 2, Hc, or the immunoglobulin allotype loci. In addition, the H-2.5 hemagglutinin response is susceptible to nongenetic influences. When antisera from B10.D2, devoid of H-2.5 hemagglutinins, were assayed in a complement-mediated cytotoxic test, they contained almost as much anti-H-2.5 activity as did the antisera from DBA/2 mice or (B10.D2 × DBA/2)F1 hybrids. The possibility is discussed that the locus responsible for the deficient primary hemagglutinin response of B 10.D2 may not be determinant-specific but may affect hemagglutinin responses in general.  相似文献   

4.
The differential expression of H-2 specificities recognized by antibody and by cytotoxic T lymphocytes (CTL) has been studied using a clone (FY7) of the C57BL/6 leukemia cell line FBL-3 (H-2 b /H-2 b ). Unlike C57BL/10 spleen cells, EL-4 lymphoma cells and Y57-2C leukemia cells (allH-2 b /H-2 b ), FY7 failed to induce the primary in vitro generation of anti-H-2b CTL by (B10.A x A)F1 (H-2 a /H-2 a or (B10.D2 x BALB/c)F1 (H-2 d /H-2 d ) responder spleen cells. In addition, FY7 was not lysed by, and did not competitively inhibit anti-H-2b CTL. Quantitative absorption tests with H-2Kb and H-2Db antisera revealed that FY7 expressed these antigens in quantitatively similar amounts to EL-4. The H-2Kb product of FY7 appeared to be identical with that of C57BL/10 spleen cells both in apparent molecular weight and isoelectric point. Yet FY7 failed to inhibit anti-H-2Kb CTL competitively in a cold target inhibition assay. Possible mechanisms are discussed for the lack of T-lymphocyte recognition of the H-2Kb-gene product expressed by FY7.Abbreviations used in this paper CTL cytotoxic T lymphocytes - MHC major histocompatibility complex - MLC mixed lymphocyte culture - PAGE polyacrylamide gel electrophoresis  相似文献   

5.
Cell-mediated lympholysis (CML) reactions were studied among four strains of C57BL/6 (B6) mice carrying mutant alleles (H-2 ba ,H-2 bd ,H-2 bg , andH-2 bh ) at thez1 locus in theK end ofH-2 b and the original B6 (H-2 b ) strain. Cross killing of target cells from lines that had not participated in the mixed lymphocyte reaction (MLR) was extensive, but usually less intense than that of target cells of stimulator cell genotype. The extent of CML crossreactivity could be limited by using cells from F1 hybrid mice as responders in MLR. In a comprehensive analysis of the cytotoxicity exerted by 20 MLR combinations with homozygous, and 10 MLR combinations with F1 hybrid responder cells, 19 different CML cytotoxicity patterns were identified, corresponding to at least 19 different CML target specificites. When the number of CML mismatches of each mutant with the originalH-2 b was calculated,H-2 ba was found to be most distinct fromH-2 b ,H-2 bs andH-2 bd were closest toH-2 b , andH-2 bh occupied an intermediate position. The validity of this sequence of relatedness is supported by published reports on skin graft survival times and on the interaction of T lymphocytes with virus-infected target cells using cells fromz1 locus mutants.  相似文献   

6.
The D region of the H-2 d haplotype contains five class I genes: H-2D d , D2 d , D3 d , D4 d and H-2L d . Although previous studies have suggested the presence of D-end encoded class I molecules in addition to H-2Dd and H-2Ld, segregation of genes encoding such molecules has not been demonstrated. In this report we have used cãtotoxic T lymphocytes (CTL) to examine the D region of the H-2 d haplotype for the presence of additional class I molecules. CTL generated in (C3H × B6.K1)F1 (K k D k , K b D b ) mice against the hybrid class I gene product Q10d/Ld expressed on L cells cross-react with H-2Ld but not H-2Dd molecules, as determined by lysis of transfected cells expressing H-2Ld but not H-2Dd. Although H-2Ld-specific monoclonal antibodies (mAb) completely inhibit H-2Ld-specific CTL from killing B10.A(3R) (K b D d L d ) target cells, only partial inhibition of anti-Q10 CTL-mediated lysis was observed, suggesting the presence of an additional D-end molecule as a target for these latter CTL. To identify the region containing the gene encoding the Q10 cross-reactive molecule, we show that anti-Q10 CTL lyse target cells from a D-region recombinant strain B10.RQDB, which has H-2D d , D2 d , D3 d , D4 d , and H-2D b but not the H-2L d H-2 d , and H-2L d (including D2 d , D3 d , and D4 d , lacks this anti-Q10 CTL target molecule. Together, these data demonstrate that a class I gene mapping between H-2D d and H-2L d encodes an antigen recognozed by anti-Q10 CTL. A likely candidate for this gene is D2 d , D3 d or D4 d .  相似文献   

7.
Hz1 (H-2 bm1 ) mice, an H-2 mutant strain derived from C57BL/6(H-2 b ), were either injected with vaccinia virus or had their spleen cells sensitized in vitro with syngeneic TNP-modified cells. The cytotoxic cells generated were tested for their activity against target cells that were either infected with vaccinia virus, TNP-modified, or both vaccinia infected and TNP-modified.Hz1 anti-TNP cytotoxic cells specifically lysed syngeneic target cells that were trinitrophenylated but not infected with vaccinia virus, while anti-vaccinia cells specifically lysed vaccinia infected target cells but not TNP-cells. Hz1 (H-2K bm1 D b ) anti-TNP effector cells killed B10.A(5R)-TNP (H-2K b D d ) targets, indicating that there is cross-reactivity between TNP-H-2Kb and TNP-H-2Kbm1. On the other hand, there is no cross-reactivity between vaccinia-H-2Kb and H-2Kbm1, since Hz1 anti-vaccinia effector cells did not kill vaccinia infected B10.A(5R) targets.Since Hz1 anti-TNP effector cells lysed B10.A(5R) target cells that were first infected with vaccinia virus and then derivatized with TNP, virus does not mask cross-reactive determinants shared by TNP-H-2Kb and H-2Kbm1. Additional experiments showed that Hz1 anti-TNP effector cells lysed TNP-modified and vaccinia infected B10.A(5R) target cells irrespective of the virus concentration used for infection or the time of addition of virus. Further, there are no detectable quantitative differences between C57BL/6 and Hz1 anti-TNP effector cells in their ability to kill TNP-5R targets.The cytotoxic effect of Hz1 anti-TNP effector cells on B10.A(5R)-TNP targets could not be blocked with TNP derivatized inhibitor cells that carry theH-2D d region allele. Thus, the ability of anti-TNP H-2Kb effector cells to cross-react with H-2Kbm1 cannot be explained by a cross-reaction between H-2Kbm1 and H-2Dd.Abbreviations used in this paper TNP trinitrophenol - PFU plaque forming unit - Con A Concanavalin A - BSS balanced-salt-solution - FCS fetal calf serum - TNBS trinitrobenzene sulfonic acid - PBS phosphate-buffered-saline  相似文献   

8.
The genetic control of natural resistance in vivo to four natural killer (NK) cell-resistant H-2 homozygous lymphoid tumor cell lines was investigated by following the survival and organ distribution of cells prelabeled with radioactive iododeoxyuridine. Backcross mice derived from DBA/2J and CBA/J parents were injected with H-2 dtumor cells and tumor cell elimination was lowest in H-2 dhomozygotes. Natural killer cell activity was also reduced in mice with the H-2 dhaplotype, but no direct correlation between NK cell levels against YAC-1 or SL2-5 lymphoma cells and natural resistance in vivo was demonstrable. Analysis of 23 BXD recombinant inbred strains indicated that natural resistance to H-2 dtumors was restricted to H-2 bstrains. There was no direct association of NK cell activity with H-2 type in the BXD strains and NK cell levels did not correlate with tumor survival in vivo. By comparing natural resistance to H-2 dand H-2 btumors in DBA/2, C57BL/6, B6D2F1, and B10.D2 mice we found that H-2 nonidentity between the tumor and the host, rather than the host H-2 haplotype, determined whether natural resistance occurred. Again, NK cell activity against YAC-1 cells was not predictive of tumor survival in these strains. These results provide genetic evidence that NK cells alone cannot account for natural resistance to H-2 nonidentical cells of hemopoietic origin.  相似文献   

9.
The antibody response against the H-2.2 specificity has been studied in three H-2 d strains, B10.D2, DBA/2, and BALB/c, and their hybrids (B10.D2 × DBA/2)F1 and (B10.D2 × BALB/c)F1. The genetic control of the response appears to be complex: The three pure strains are responders, whereas both hybrids when immunized with C3H-HTG are nonresponders. Individual analysis of N3 offspring is compatible with the idea that, in this combination, an Ea-4 incompatibility between donor and immunized strain is necessary for the anti-H-2.2 response to occur. H-2 d /H-2 k hybrids (B10.BR × B10.D2)F1 or (B10.BR × DBA/2)F1 are responders when immunized with C57BL/10 (H-2 b ) but not with B10.A(2R) (H-2 h ), indicating that simultaneously recognized H-2 specificities are necessary for the anti-H-2.2 response.  相似文献   

10.
Alloantibodies specific for non-H-2 histocompatibility antigens of the mouse have been produced. Immunization (BALB/cJ×DBA/2J)F1 anti-B10.D2/n was conducted, followed by hemagglutination, immunofluorescence, and mixed hemabsorption tests on absorbed and unabsorbed sera. The results indicate that antibodies specific for H-3a and H-8a antigens are present. In addition, H-8a antigenic determinants were detected on erythrocyte membrane surfaces, as well as on cells of other body tissues.  相似文献   

11.
In a preceding report, the detection of an H-2-linked immune response to the H-X d antigen on the P815-X2 mastocytoma was demonstrated by the significantly increased survival of (C57BL/6 × DBA/2)F1 (B6D2F1) male hybrids (H-X b ) compared with female siblings (H-X b/H-X d ) after injection with the histocompatible tumor (H-X d ). This interpretation was supported by the absence of this sex effect in reciprocal D2B6F1 hybrids (H-X d and H-X d/H-X b ). Additional findings presented in this paper support the conclusion that this sex effect is due to a true immunological response to H-X d : (a) Reciprocal (DBA/2 × C57BL/6 H-2 mutant)F1 hybrids, as well as D2B6F1, failed to exhibit the sex effect: (b) the demonstration of the sex effect in (BALB/c × DBA/2)F1 and (BALB/c-H-2 dm2 × DBA/2)F1 hybrids and in (C57BL/10 × DBA/2)F1 hybrids was consistent with the known H-X incompatibilities between the strains BALB/c and DBA/2 and C57BL/10 and DBA/2, respectively, previously demonstrated by skin grafting; and (c) the sex effect was not abrogated by castration of male B6D2F1 hybrids. Variability in the presence or absence of the sex effect was observed in various [recombinant inbred (RI) × DBA/2]F1 hybrids and may be attributed to the influence of a regulatory non-H-2 gene which is closely linked to the gene coding for mouse kidney-androgen-regulated protein (KAP) but androgen-independent, or to variability in inheritance of the H-X b allele among the RI lines. It is proposed that the P815-X2 model may be utilized to type RI lines derived from a cross between C57BL/6 and DBA/2 for their H-X genotypes.Abbreviations B C57BL/6 origin allele - B6 C57BL/6 - B10 C57BL/10 - B6D2F1 (C57BL/6 × DBA/2)F1 - B6 m D2F1 (C57BL/6 H-2 mutant × DBA/2)F1 - bm10 B6.C-H-2 bm10 - C BALB/c - D DBA/2 origin allele - D2 DBA/2 - dm2 BALB/c-H-2 dm2 - H-X X chromosome-determined histocompatibility antigen of the mouse - Ir gene, immune response gene - KAP kidney androgenregulated protein - MST median survival time - RI recombinant inbred - SDP strain distribution pattern  相似文献   

12.
The level of HLA-B27 transgene expression on the cell surface is dependent on the host H-2 haplotype. Mice homozygous for the H-2 b , H-2 f , H-2 f , H-2 p , H-2 r , and H-2 k haplotypes express B27 at high levels. An intermediate level of B27 expression is observed in H-2 v mice whereas low levels of B27 are expressed in H-2 q and H-2 d mice. The decreased expression of B27 maps to the D region of the major histocompatibility complex. Recombinant strain B10.RKDB (DdLb) mapped the low expression gene centromeric to H-2L. In order to determine the low expression within the H-2D region, the B27 transgene was introduced into B10.D2-H-2 dm1 and BALB/c-H-2 dm2 mice. Expression of B27 in both of these strains was high indicating that neither H-2D d nor H-2L d is responsible for the low expression. This maps the effect between the H-2D and H-2L loci. In addition, introduction of human 2-microglobulin (2m) into B10.D2-B27 transgenic mice caused a marked enhancement of B27 expression on the cell surface suggesting that the defect in B27 expression in certain haplotypes is due to an inability of B27 to associate with endogenous mouse 2m. We propose that gene(s) mapping between D and L (either D2, D3, D4, or some as yet unidentified gene) may be involved in class I assembly by helping association of 2m with class I. This putative molecule, designated Assembly Enhancer (AE) might have a negative influence in the association between human class II and mouse 2m.  相似文献   

13.
A newH-2 mutant, BALB/c-H-2 db , is described. This mutant originated in BALB/c, is inbred, and is coisogenic with the parental BALB/cKh strain. The mutation is of the loss type since BALB/c-H- db rejects BALB/c, but not vice versa. Complementation studies have localized the mutation to theD region of theH-2 complex. A cross between BALB/c-H-2 db and B10.D2-H-2 da failed to complement for either BALB/c or B10.D2 skin grafts, indicating that these are two separate mutations at the same locus (Z2). Direct serological analysis and absorption studies revealed that, with one exception, theH-2 andIa specificities of BALB/c and BALB/c-H-2 db are identical. In particular,H-2.4, the H-2Dd private specificity, is quantitatively and qualitatively identical in the two strains. The exception is that of the specificities detected by antiserum D28b: (k×r)F1 anti-h, which contains anti-H-2.27, 28, and 29. These specificities appear to be absent from theH-2 db mutant since they are not detected directly or by absorption. Other public specificities are present in normal amounts,e.g., the reaction with antisera to H-2.3, 8, 13, 35, and 36. The reaction with antiserum D28 (f×k)F1 anti-s, which contains antibodies to H-2.28, 36, and 42, is the same in both strains. Antiserum made between the two strains (H-2 db anti-H-2 d ) reacts like an anti-H-2 serum, in that it reacts with both T and B cells by cytotoxicity, but is not a hemagglutinating antibody. The serum reacts as does the D28b serum in both strain distribution and in cross-absorption studies. We conclude that theH-2 db mutation occurred at a locus in theD region, resulting in the loss of the H-2.28 public serological specificity and of a histocompatibility antigen. Whether these are one and the same antigen is not yet known. The data, in view of other evidence, imply that the public and private specificities are coded for by separate genes.Abbreviations used in this paper are as follows CML cell-mediated lysis - MLR mixed lymphocyte reaction - GVHR graft-versus-host reaction - RFC rosette-forming cells - RAM-Ig rabbit anti-mouse IgG  相似文献   

14.
Six semicongenic lines carrying differentt haplotypes on the background of strain C57BL/10Sn (B10.t strains) and a (B10 ×T/t 0) F1 hybrid were tested against one another in the mixed lymphocyte reaction (MLR) and cell-mediated lymphocytotoxicity (CML) assays. In every instance, the MLR results paralleled those of the CML typing: strain combinations giving a positive result in one assay gave a positive result in the second; combinations in which no response was observed in the MLR assay also failed to kill target cells specifically in the CML assay. Furthermore, the MLR and CML results were concordant with the results of the serological typing of these strains, as reported previously by us. The combined results suggest sharing ofH-2 hyplotypes between B10.t12 and B10.t32, between B10.t6 and B10.tw1, and between B10.tw2 and (B10. ×T/t 0) F1. These data support the conclusion, reached in our previous publication, that members of the samet-complementation group, with few exceptions, shareH-2 haplotypes.  相似文献   

15.
Reciprocal radiation bone-marrow chimeras were produced between the standard C57BL/6 (=B6) and the mutant B6.C-H-2 ba (=Hz1) strain. When infected with vaccinia virus, these chimeras, as well as an (Hz1 × B6)= Hz1 chimera, produced cytotoxic cells that killed vaccinia-infected H-2KkH-2Db target cells but failed to kill virus-infected H-2KbH-2Dd cells. Virus-infected (Hz1 × B6)F1 B6 chimeras, however, killed both types of target. These experiments demonstrate strict T-cell specificity capable of differentiating between two molecules that apparently differ by a single amino acid substitution.  相似文献   

16.
A major genetic determinant of natural resistance to bone marrow allografts, designated asHh-3, was mapped to theH-2K region. This gene may code for or regulate the expression of cell surface structures selectively expressed on donor hemopoietic cells and recognized by naturally occurring cytotoxic effectors. Resistance was observed as failure of donor cell growth in the spleen of irradiated 129-strain (H-2 bc ) recipients of H-2k bone marrow cells. The mapping was accomplished by substituting donor cells bearingk alleles throughout theH-2 complex with cells of recombinant mouse lines bearingk alleles at definedH-2 regions. The host antigraft reaction underlying resistance was abrogated by pretreating 129-strain mice with either rabbit antimouse lymphocyte serum or the antimacrophage agent silica. Grafting of H-2Kk cells into mice ancestrally unrelated to 129 but sharing theH-2 bc or the similarH-2 b haplotype, and intoH-2 b/k ,H-2 k/bc , andH-2 k/d F1 hybrids revealed that resistance was unique to 129 mice, since mice of the other strains, including F1 hybrids, were susceptible to the grafts. Thus,Hh-3 incompatibility was a necessary but insufficient condition for the manifestation of allogeneic resistance; other genetic factors not associated withH-2 conferred responder status to 129-strain mice and nonresponder status to D1.LP, B10.129(6M), B10, B6, and possibly to F1 hybrid mice. The possible relationships between allogeneic resistance to H-2k marrow grafts, hybrid resistance to H-2k lymphomas, and F1 hybrid antiparental H-2k cytotoxicity induced in vitro are discussed.  相似文献   

17.
The specificity of an antiserum directed againstI region associated (Ia) antigens is described. The serum was raised in (DBA/1×B10.D2)F1 mice against lymphocytes of AQR mice, differing from the responder for theI region only. The serum reacts with Ia antigens expressed on B cells (Iab) as well as with Ia antigens expressed on T cells (Iat). Absorption studies indicate that B cells possess at least two Ia antigens, and one of these is shared by T cells. However, this shared antigen is not present on the surface of lymphocytes of thymectomized mice. Analysis of the strain distribution of Iab and Iat antigens revealed that the Iab antigens are present on lymphocytes of mice carrying theIA k subregion and that the Iat antigens are present on lymphocytes of mice carryingI region genes of theH-2 k haplotype located between theIA andIB subregions. This conclusion is based on the analysis of the antiserum's reactivity with T and B cells of the strains B10.A(2R), B10.A(4R) and B10.HTT: the serum reacts with B and T cells of B10.A(2R) but only with B cells of B10.A(4R) mice and only weakly with T cells of B10.HTT mice.Abbreviations ALG antimouse lymphocyte globulin from rabbits - B cells bone marrow derived lymphocytes - B10 C57BL/10Sn mice - D1D2F1 (DBA/1×B10.D2)F1 hybrid mice - GVHR graft-vs-host reaction - Ia I region associated antigen - Iab on B cells - Iat on T cells - MLR mixed lymphocyte reaction - T cells thymus-derived lymphocytes - Thy-1 thymus antigen 1, formerly called theta - Tx-Lyc lymphocytes of thymectomized, ALG treated, lethally irradiated and anti-Thy-1 treated bone marrow reconstituted mice - 2R B10.A(2R)/SgSn mice - 4R B10.A(4R) mice  相似文献   

18.
This report confirms and expands on the original preliminary observations made by Bonner and Slavkin that corticosteroid-induced cleft palate in mice is associated with H-2 haplotype. Using three congenic strains, B10, B10.A, and B10.D2, our studies demonstrate that B10.A (H-2 b) is most susceptible and B10.D2 (H-2 d) is least susceptible, B10 (H-2 b) being intermediate. Variation in fetal loss among strains accounts for less than 1 percent of the variation in cleft-palate frequency among strains; variation in H-2 haplotype, however, accounts for more than 60 percent of the variation in cleft-palate frequency. With regard to all possible reciprocal F1 hybrids, our results indicate that while there is a significant maternal effect, maternal haplotype can account for only 11 percent of the variation in cleft-palate frequency among crosses. Embryonic haplotype accounts for 17 percent of the variation, which is indicative of an important embryonic effect. Finally, our studies suggest that susceptibility to corticosteroid-induced cleft palate is associated with the K end of the H-2 complex.  相似文献   

19.
Rejection of tailskin grafts exchanged between two male hybrids of the cross B10.M × B10.RIII(71NS) revealed a mutation in theH-2 f haplotype from the B10.M congenic line. Complementation studies with skin grafting and cell-mediated lympholysis showed the mutant, namedH-2 fb , to be different from anotherH-2 f mutant,H-2 fa , and further, that the HH-2 fb mutation occurred in theD end of theH-2 complex. Reciprocal skin grafts exchanged between mutant and normal mice were rejected. Hemagglutinating antibody reactive with B10.M cells was raised in the mutant mice. Mutant spleen cells responded weakly, but significantly, to wild-type cells in a mixed lymphocyte culture and in a graftversus-host assay, but no response was seen in the opposite direction. However, cytotoxic effector cells were generated against target cells in both directions in a cell-mediated lympholysis assay.  相似文献   

20.
Parental NZB and B10.D2, F1 and F1 × B10.D2 mice were studied to determine the genetic control of (1) altered B-cell IgD expression, (2) plasma cell frequency, (3) IgM secretion per plasma cell, (4) primary in vitro cytotoxic T-cell responses to H-2-compatible cells, (5) production of thymocyte-binding antibodies, and (6) production of red-cell-specific antibodies. The results demonstrate that, in this cross, IgD abnormalities and production of red-cell-specific antibodies were recessive traits. There was a common genetic influence on plasma cell frequency, IgM secretion per plasma cell and production of thymocyte-binding antibodies which was distinct from the genes governing the ability to generate a cytotoxic T lymphocyte response to H-2-compatible cells.Abbreviations used in this paper CTL cytotoxic T lymphocyte - F1 anti-Fab fluorescein-labeled antimouse Fab - FMF flow microfluorometry - Ig immunoglobulin - IgM/PC IgM secretion per PC - PC plasma cell - sIg surface immunoglobulin - TBA thymocyte-binding antibody  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号