首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diel patterns in the uptake of nitrogenous nutrients were observedin the coastal plume of the Chesapeake Bay system, but the specificpatterns varied with season. During the winter months, ratesof NH4+ and urea uptake were significantly higher at night thanduring the day, and rates of NO3 uptake were higher duringthe day. During the summer, rates of NH4+ and urea uptake weresignificantly higher at night only during half the studies conducted;during the remaining studies, there was either no significantdifference or rates of uptake of NH4+ were higher during theday. Rates of NO3 uptake during the summer months werealso higher during the day than at night. Seasonal differenceswere also apparent in the time of day at which maximum observeduptake rates of each nitrogen nutrient occurred. During thewinter-spring months, maximum observed rates of NO3 uptakeoccurred between first light and noon, whereas during the summermonths, maximum observed uptake rates of NO3 occurredboth morning and afternoon, and consistently 9–16 h afterthe maximum observed peak in the uptake of reduced nitrogen.We interpret these findings in terms of seasonal shifts in nitrogennutritional status of the assemblages, as well as species-specificdifferences in the effect of a given stimulus (e.g. a nitrogenpulse at the mouth of the Bay) to entrain an uptake response,and we suggest that the extent of this variability must be understoodbefore generalizations about the use of f-ratios as characteristicsof specific populations or water masses can be drawn.  相似文献   

2.

Mesophotic coral ecosystems (MCEs) represent the lowest depth distribution inhabited by many coral reef-associated organisms. Research on fishes associated with MCEs is sparse, leading to a critical lack of knowledge of how reef fish found at mesophotic depths may vary from their shallow reef conspecifics. We investigated intraspecific variability in body condition and growth of three Hawaiian endemics collected from shallow, photic reefs (5–33 m deep) and MCEs (40–75 m) throughout the Hawaiian Archipelago and Johnston Atoll: the detritivorous goldring surgeonfish, Ctenochaetus strigosus, and the planktivorous threespot chromis, Chromis verater, and Hawaiian dascyllus, Dascyllus albisella. Estimates of body condition and size-at-age varied between shallow and mesophotic depths; however, these demographic differences were outweighed by the magnitude of variability found across the latitudinal gradient of locations sampled within the Central Pacific. Body condition and maximum body size were lowest in samples collected from shallow and mesophotic Johnston Atoll sites, with no difference occurring between depths. Samples from the Northwestern Hawaiian Islands tended to have the highest body condition and reached the largest body sizes, with differences between shallow and mesophotic sites highly variable among species. The findings of this study support newly emerging research demonstrating intraspecific variability in the life history of coral-reef fish species whose distributions span shallow and mesophotic reefs. This suggests not only that the conservation and fisheries management should take into consideration differences in the life histories of reef-fish populations across spatial scales, but also that information derived from studies of shallow fishes be applied with caution to conspecific populations in mesophotic coral environments.

  相似文献   

3.
The distribution of fine roots and external ectomycorrhizal mycelium of three species of trees was determined down to a soil depth of 55 cm to estimate the relative nutrient uptake capacity of the trees from different soil layers. In addition, a root bioassay was performed to estimate the nutrient uptake capacity of Rb+ and NH4+ by these fine roots under standardized conditions in the laboratory. The study was performed in monocultures of oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) Karst.] on sandy soil in a tree species trial in Denmark. The distribution of spruce roots was found to be more concentrated to the top layer (0–11 cm) than that of oak and beech roots, and the amount of external ectomycorrhizal mycelia was correlated to the distribution of the roots. The uptake rate of [86Rb+] by oak roots declined with soil depth, while that of beech or spruce roots was not influenced by soil depth. In modelling the nutrient sustainability of forest soils, the utilization of nutrient resources in deep soil layers has been found to be a key factor. The present study shows that the more shallow-rooted spruce can have a similar capacity to take up nutrients from deeper soil layers than the more deeply rooted oak. The distribution of roots and mycelia may therefore not be a reliable parameter for describing nutrient uptake capacity by tree roots at different soil depths.  相似文献   

4.
The marine cyanobacterium Prochlorococcus , the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage. We observed, in contrast to diurnally similar methionine uptake rates by Synechococcus cells, obvious diurnal rhythms in methionine uptake by Prochlorococcus cells in the tropical Atlantic. These rhythms were confirmed using reproducible cyclostat experiments with a light-synchronized axenic Prochlorococcus (PCC9511 strain) culture and 35S-methionine and 3H-leucine tracers. Cells acquired the tracers at lower rates around dawn and higher rates around dusk despite >104 times higher concentration of ammonium in the medium, presumably because amino acids can be directly incorporated into protein. Leucine uptake rates by cells in the S+G2 cell cycle stage were consistently 2.2 times higher than those of cells at the G1 stage. Furthermore, S+G2 cells upregulated amino acid uptake 3.5 times from dawn to dusk to boost protein synthesis prior to cell division. Because Prochlorococcus populations can account from 13% at midday to 42% at dusk of total microbial uptake of methionine and probably of other amino acids in N-depleted oceanic waters, this genus exerts diurnally variable, strong competitive pressure on other bacterioplankton populations.  相似文献   

5.
Diel periodicity in the uptake of nitrate, and nitrite as measured by the 15N technique, occurs in reservoir phytoplankton. The time course of changes in the rate of nitrate uptake generally paralleled changes in irradiance. Uptake of nitrate and nitrite occurred in the dark, but at low rates. Periodicity in nitrate uptake needs to be considered in models of primary production where nitrogen is the limiting nutrient.  相似文献   

6.
Branchial Ca uptake varied dielly with a nadir at 1000 hours and two peaks at 1600 and 0400 hours in rainbow trout. This variation profile essentially reflected Ca uptake through the arterio-arterial circulation.  相似文献   

7.
Urea uptake by phytoplankton at various stages of nutrient depletion   总被引:2,自引:0,他引:2  
Uptake of 14C-urea by Thalassiosira pseudonana and Skeletonemacostatum grown in batch culture with NO2 and NO3as nitrogen sources was measured under three conditions: pre-depletion(when nitrogenous nutrient was present in the culture mediumat saturating concentrations), at-depletion (when nitrogenousnutrient could no longer be detected), and several hours post-depletion.Vmax-urea, the initial instantaneous uptake rate, remained constantunder all three conditions, and was in excess of uptake ratesrequired for cellular doubling. Variations in uptake under thethree conditions were observed, as functions of the length oftime over which uptake was observed and the growth rate of theculture. The maximum instantaneous uptake rate was not differentfor the three conditions; variations in uptake were due to theperiod of time over which the maximum uptake rate was maintained.The ability of cells to take up urea rapidly, even when adequatelynourished by NO2 and NO3, could be of significancein a low and variable urea-nutrient regime in the natural environment.  相似文献   

8.
Studies of reef fish assemblages in space rarely consider the effects of temporal variability on spatial comparisons, and when they do, usually examine timescales of months to years. The nature of fish monitoring surveys is such that particular locations may be surveyed at one time of day, and surveys designed to establish the degree of spatial variability in assemblages may be confounded if the order of sampling within treatments is not randomised with respect to time of day. In this study, we tested the degree of temporal variability in temperate reef fish counts at the same sites in New Zealand and Italy, within and between days. Repeated counts separated by months returned quite different assemblages, whereas counts separated by days did not. Although overall assemblage structure did not generally differ significantly with time of day, at some locations there was evidence of changes in the relative density of certain species in the afternoon relative to the morning. Care must be taken not to introduce systematic bias to spatial comparisons due to behavioural variability in fishes at differing times of day.  相似文献   

9.
Preliminary studies of mercury (Hg) cycling in the Everglades revealed that dissolved gaseous mercury (DGM), total mercury (HgT), and reactive mercury (HgR) show reproducible, diel trends. Peak water-column DGM concentrations were observed on or about noon, with a 3 to 7 fold increase over night-time concentrations. Production of DGM appears to cease during dark periods, with nearly constant water column concentrations that were at or near saturation with respect to the overlying air. A simple mass balance shows that the flux of Hg to the atmosphere from diel DGM production and evasion represents about 10% of the annual input from atmospheric deposition. Production of DGM is likely the result of an indirect photolysis reaction that involves the production of reductive species and/or reduction by electron transfer. Diel variability in HgT and HgR appears to be controlled by two factors: inputs from rainfall and photolytic sorption/desorption processes. A possible mechanism involves photolysis of chromophores on the surface of a solid substrate (e.g., the periphyton mat) giving rise to destabilization of sorbed mercury and net desorption during daylight. At night, the sorption reactions predominate and the water-column HgT decreases. Methylmercury (MeHg) also showed diel trends in concentration but were not clearly linked to the solar cycle or rainfall at the study site.  相似文献   

10.
Oxygen consumption (µl/ mg dry wt. · hr–1 corrected to STP) in Chaoborus punctipennis was measured in a Gilson differential respirometer at two-hour intervals during 24-hour periods. Animals were held at controlled conditions similar to those at the time of collection. Respiration was measured under controlled temperatures and natural photoperiod. Measurements were begun about 36 hours after collection.Winter-collected animals showed a lower and more stable respiration than summer and fall-collected animals which did not differ from one another. Respiration increased with temperature becoming quite variable at 30°C where mortality was highest. Animals collected at different seasons and subjected to a variety of temperatures did not show a predictable pattern of respiration during the daily cycle under any condition tested.Since the 36-hour delay in respiration measurements could have dampened a diel cycle, oxygen consumption was determined within an hour of collection and followed for 24 hours. For this experiment animals were collected at six-hour intervals over a 24-hour period. Respiration did not show a predictable pattern of variation during the day-night cycle.This work was supported in part by a grant from Department of Interior, Office of Water Resources Research. All correspondence should be addressed to A.S. Tombes.  相似文献   

11.
Phytoplankton nitrogen demand in lower Narragansett Bay, RhodeIsland, measured during the winter-spring of 1977–78 andsummers of 1978 and 1979, is compared with estimates of zooplanktonand the benthic nitrogen remineralization drawn from the resultsof ekperimental field studies. Measured uptake rates would generallylead to the depletion of available nitrogenous nutrient stockswithin hours, and usually exceeded estimates of benthic pluszooplankton remineralization. Additional estimates of nitrogeninputs from sewage and riverine sources appear insufficientto make up the difference. The discrepancy lends support tothe paradigm that water column remineralization by microheterotrophsmay supply much, if not most, of the nitrogen needs of coastalphytoplankton.  相似文献   

12.
Nutrient enrichment threatens river ecosystem health in urban watersheds, but the influence of urbanization on spatial variation in nutrient concentrations and nutrient limitation of biofilm activity are infrequently measured simultaneously. In summer 2009, we used synoptic sampling to measure spatial patterns of nitrate (NO3 ), ammonium (NH4 +), and soluble reactive phosphorus (SRP) concentration, flux, and instantaneous yield throughout the Bronx River watershed within New York City and adjacent suburbs. We also quantified biofilm response to addition of NO3 , phosphate (PO4 3−), and NO3  + PO4 3− on organic and inorganic surfaces in the river mainstem and tributaries. Longitudinal variation in NO3 was low and related to impervious surface cover across sub-watersheds, but spatial variation in NH4 + and SRP was higher and unrelated to sub-watershed land-use. Biofilm respiration on organic surfaces was frequently limited by PO4 3− or NO3  + PO4 3−, while primary production on organic and inorganic surfaces was nutrient-limited at just one site. Infrequent NO3 limitation and low spatial variability of NO3 throughout the watershed suggested saturation of biological N demand. For P, both higher biological demand and point-sources contributed to greater spatial variability. Finally, a comparison of our data to synoptic studies of forested, temperate watersheds showed lower spatial variation of N and P in urban watersheds. Reduced spatial variation in nutrients as a result of biological saturation may represent an overlooked effect of urbanization on watershed ecology, and may influence urban stream biota and downstream environments.  相似文献   

13.
1. We measured NH4+ and PO4?3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm respiration and enzyme activity and channel geomorphology in streams draining forested catchments in the northwestern (Northern California Coast Range and Cascade Mountains) and southeastern (Appalachian and Ouachita mountains) regions of the United States. Our goal was to use measures of biofilm enzyme activity and nutrient uptake to assess nutrient limitation in forested streams across broad regional scales. 2. Geomorphological attributes, biofilm enzyme activity and NH4+ uptake were significantly different among streams in the four study units. There was no study unit effect on PO4?3 uptake. The proportion of the stream channel in pools, % woody debris, % canopy closure, median substrate size (d50), stream width (w), stream velocity (v), discharge (Q), dispersion coefficient (D) and transient storage (As/A) were correlated with biofilm enzyme activity and nutrient uptake in some study units. 3. Canonical correlation analyses across study units revealed significant correlations of NH4Vf and PO4Vf with geomorphological attributes (w, d50, D, % woody debris, channel slope and % pools) and biofilm phosphatase activity. 4. The results did not support our expectation that carbon processing rates by biofilm microbial assemblages would be governed by stream nutrient availability or that resulting biofilm enzyme activity would be an indicator of nutrient uptake. However, the relative abundances of peptidases, phosphatase and glycosidases did yield insight into potential N‐, P‐ and C‐limitation of stream biofilm assemblages, and our use of biofilm enzyme activity represents a novel application for understanding nutrient limitations in forested streams. 5. Regressions of Vf and U against ambient NH4+ and PO4?3 indicated that none of our study streams was either NH4+ or PO4?3 saturated. The Appalachian, Ouachita and Coastal streams showed evidence of NH4+ limitation; the Ouachita and Coastal streams were PO4?3 limited. As a correlate of nutrient limitation and saturation in streams, ratios of total aminopeptidase and phosphatase activities and the ratio of NH4U to PO4U indicate these forested streams are predominantly N‐limited, with only the streams draining Ouachita and Coastal catchments demonstrating appreciable levels of P‐limitation. 6. Our results comparing the stoichiometry of microbial enzyme activity with nutrient uptake ratios and with the molar ratios N and P in stream waters suggest that biological limitations are not strictly the result of stream chemistry and that the assessments of nutrient limitations in stream ecosystems should not be based on chemistry alone. 7. Our present study, along with previous work in streams, rivers and wetlands, suggests that microbial enzyme activities, especially the ratios of total peptidases to phosphatase, are useful indicators of nutrient limitations in aquatic ecosystems.  相似文献   

14.
In oligotrophic waters, not only community structure but also physiological properties of heterotrophic bacteria are influenced by the concentration of organic matter.The relationship between growth rate of two facultatively oligotrophic strains ofAeromonas sp. No. 6 andFlavobacterium sp. M1 was studied in comparison with that of two eutrophic strains ofEscherichia coli 7020 andFlavobacterium sp. M2. These strains had two or three different substrate constants (Ks values) depending on substrate concentrations: Ks values for the two former were remarkably lower than those for the two latter. For instance, Ks value forAeromonas sp. No. 6 was about 8.9M when substrate concentration was greater than 53M and about 1.1M when substrate concentration was less man 53M. InE. coli the Ks value was about 260M at greater than 5600M and about 47M at less than 5600M substrate concentration.Uptake kinetics ofAeromonas sp. grown in a medium containing 2.7 mM glutamate (H-cell) and 0.11M glutamate (L-cell) have been determined for the intact cells. H-cell had two distinct values of Km for glutamate assimilation and respiration, and L-cell had three distinct values of Km for glutamate assimilation and respiration: In H-cell Km of assimilation was 2.8×10–7 M and 1.5×10–4 M, and Km of respiration was 2.3×10–7 M and 1.7×10–4 M; in L-cell Km of assimilation was 7.4×10–8 M, 8.3×10–6 M, and 1.3×10–4 M, and Km of respiration was 2.5×10–7, 8.9×10–6M, and 1.7×10–4 M. More than 60% of glutamate taken up by the H- and L-cells was respired when the substrate concentration was less than 10–6 M, although at greater than 10–6 M, 50% and 30% of glutamate was respired by H-cells and L-cells, respectively. These results suggest that the facultatively oligotrophic bacteria grow with high efficiency in environments with extremely low nutrient concentration, such as oligotrophic waters of lakes and ocean, as compared with in their growth in conditions of high nutrient concentraton, such as nutrient broth.  相似文献   

15.
Time—depth variations in inorganic carbon and nitrogenuptake by phytoplankton in Toolik Lake were examined over 36h using isotope tracer techniques. Rates of dissolved inorganiccarbon (DIC = CO2 + + ) and maximum uptake were phased with the did high light/low light regime characteristic of the briefarctic summer with the amplitude of oscillation greater forDIC than for . Ammonium uptake was continuous at uptake-saturating concentrations. No conclusive evidencewas found for a diel periodicity in nitrogenous nutrient levelsor uptake of and ambient concentrations. A pronounced light—temperature effecton dissolved inorganic nitrogen (DIN = + ) uptake was evident at depth when rates of uptake were maximum. Depth-integrated daily C/N uptake ratios(mol) estimated as the mean of four consecutive 6 h incubationsranged from 1.8–6.4 under conditions of substrate saturationand from 6.0–16.1 at ambient levels of DIN. The efficacyof 24 h incubations to estimate accurately day-rates of DICand substrate-saturated DIN uptake was assessed by comparingestimates obtained from 24 h exposures to those approximatedby summing results from serial short-term incubations. Experimentsof 24 h duration accurately predicted day-rates of maximum uptake but underestimated daily DIC uptake by 13 7% ( SD). Day-length incubations introduced serious errors in the estimation of day-rates of maximum uptake, effecting an underestimation of 29 5%( SD). 1Institute of Marine Science Contribution No. 538.  相似文献   

16.
Soybean plants (Glycine max L. Merr. var. Hawkeye), grown in nutrient solutions maintained at graded concentrations showed a large response in both shoot dry weight and total ion uptake. Growth rate was dependent upon nutrient concentration, even when quantity of nutrient was not limiting. Peak periods for absorption of specific ions at certain growth stages were not exhibited. Rates of ion uptake by soybeans were generally proportional to the growth rate during the period of major growth. It is suggested that a dilute nutrient solution could provide sufficient nutrients for adequate root growth prior to major shoot growth, at which time a more concentrated nutrient solution is needed.  相似文献   

17.
Gutschick VP  Kay LE 《Plant physiology》1991,96(4):1125-1130
Seedlings of maize (Zea mays L. cv WF9 × Mo 17) growing at low water potentials in vermiculite contained greatly increased proline concentrations in the primary root growth zone. Proline levels were particularly high toward the apex, where elongation rates have been shown to be completely maintained over a wide range of water potentials. Proline concentration increased even in quite mild treatments and reached 120 millimolal in the apical millimeter of roots growing at a water potential of −1.6 megapascal. This accounted for almost half of the osmotic adjustment in this region. Increases in concentration of other amino acids and glycinebetaine were comparatively small. We have assessed the relative contributions of increased rates of proline deposition and decreased tissue volume expansion to the increases in proline concentration. Proline content profiles were combined with published growth velocity distributions to calculate net proline deposition rate profiles using the continuity equation. At low water potential, proline deposition per unit length increased by up to 10-fold in the apical region of the growth zone compared to roots at high water potential. This response accounted for most of the increase in proline concentration in this region. The results suggest that osmotic adjustment due to increased proline deposition plays an important role in the maintenance of root elongation at low water potentials.  相似文献   

18.
This study was conducted to determine the effects of different pH regimes on root colonization with four vesicular-arbuscular mycorrhiza (VAM) isolates, and VAM effects on host plant growth and nutrient uptake. Sorghum [Sorghum bicolor (L.) Moench] was grown at pH 4.0, 5.0, 6.0 and 7.0 (±0.1) in hydroponic sand culture with the VAM isolates Glomus etunicatum UT316 (isolate E), G. intraradices UT143 (isolate I), G. intraradices UT126 (isolate B), and an unknown Glomus isolate with no INVAM number (isolate A). Colonization of roots with the different VAM isolates varied differentially with pH. As pH increased, root colonization increased with isolates B and E, remained unchanged with isolate I, and was low at pH 4.0 and high at pH 5.0, 6.0, and 7.0 with isolate A. Isolates E and I were more effective than isolates A and B in promoting plant growth irrespective of pH. Root colonization with VAM appeared to be independent of dry matter yields or dry matter yield responsiveness (dry matter produced by VAM compared to nonmycorrhizal plants). Dry matter yield responsiveness values were higher in plants whose roots were colonized with isolates E and I than with isolates A and B. Shoot P concentrations were lower in plants colonized with isolates E and I than with isolates A and B or nonmycorrhizal plants. This was probably due to the dilution effect of the higher dry matter yields. Neither the VAM isolate nor pH had an effect on shoot Ca, Mg, Zn, Cu, and Mn concentrations, while the VAM isolate affected not only P but also S, K, and Fe concentrations. The pH x VAM interaction was significant for shoot K, Mg, and Cu concentrations.  相似文献   

19.
Rust haustoria: nutrient uptake and beyond   总被引:8,自引:3,他引:5  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号