首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in tissue viscance (Vti) and collateral resistance (Rcoll) are both used as indexes of peripheral lung responses. However, it is not known whether the two responses reflect the effects of activation of the same contractile elements. We measured differential responses in Vti and Rcoll to histamine and leukotriene (LT) C4 to determine whether each evoked a similar pattern of response. Using the wedged bronchoscope constant-flow technique, we measured Rcoll in lobar segments of anesthetized, paralyzed, open-chest, mechanically ventilated mongrel dogs. In addition, we measured (with an alveolar capsule) alveolar pressure (PA) within the segment under study. This allowed us to calculate Vti, the component of the PA change in phase with segment flow. Rcoll and Vti measurements were obtained under base-line conditions and after local delivery of aerosols generated from histamine and LTC4. In five out of five lobes studied with both histamine and LTC4, the fractional Rcoll response to histamine was greater than the fractional Rcoll response to LTC4. In contrast, in four out of five lobes examined, the fractional increase in Vti accompanying the histamine response was less than the fractional increase in Vti accompanying LTC4 administration. These data suggest that anatomically distinct contractile elements influence Vti and Rcoll insofar as LTC4 and histamine evoke quantitatively different changes in these two indexes of peripheral lung responses.  相似文献   

2.
We studied the effects of neutrophil activation on collateral ventilation and peripheral lung reactivity in anesthetized dogs. A fiberoptic bronchoscope was wedged into a segmental airway under direct vision. Ventilation beyond the obstruction thus occurred only through collateral channels. Through one lumen of a double-lumen catheter threaded through the suction port of a bronchoscope, 5% CO2 in air was infused at a known constant rate (V coll). Through the other lumen, pressure at the tip of the bronchoscope was monitored (Pb). For measurements of resistance to flow through the collateral system (Rcs), the ventilation was stopped at functional residual capacity (FRC). Histamine was delivered through the bronchoscope to the obstructed lung segment in the form of an aerosol mist generated by an ultrasonic nebulizer. Measurements of Rcs were used as a parameter of the peripheral lung reactivity to histamine challenge. Within one hour after intravenous infusion of phorbol myristate acetate (PMA), a neutrophil activator, the reactivity to histamine significantly increased. After this, Rcs increased even without histamine challenge. This increase may have been due to an edematous injury of lung caused by PMA. The nature of the injury was confirmed by wet to dry weight ratios. In the other group, the white cell count dropped below 1000 per cu. mm. after intravenous infusion of nitrogen mustard. The same experimental protocols were followed. The Rcs did not increase even with histamine challenge. Our results suggested that substances such as oxygen radicals and arachidonic acid metabolites, which can be released by activated neutrophils, may not not only increase peripheral lung reactivity, but may also induce pulmonary edema.  相似文献   

3.
An attempt was made to investigate how the mouth pressure curve represents the process of air flowing into the collapsed segment downstream to the choke point when the airflow is abruptly interrupted at the mouth during forced expiration. Immediately after the interruption of airflow, the mouth pressure suddenly increased (phase 1), followed by a slower rise in pressure (phase 2) within approximately 100 ms until the pressure reached the alveolar pressure. The pleural and alveolar pressures remained constant during this process. The first phase of the abrupt rise represented the pressure induced by the instantaneous interruption of the airflow itself. Analysis of the supramaximal flow (Vsupramax) observed after resumption of the airflow suggested that the choke point remained constant during the second phase of the mouth pressure after interruption of maximal flow (Vmax). From these results, examination of the second phase of the mouth pressure curve may provide useful information about the downstream segment of the airway.  相似文献   

4.
We compared the histamine responsiveness of peripheral airways (less than 6.0 mm diam) and parenchymal tissues in eight anesthetized paralyzed open-chest mongrel dogs. We measured pressure in a peripheral bronchus by using an antegrade wedged catheter and pressure in the alveolar region subtended by the wedged bronchus by using an alveolar capsule. Sinusoidal volume oscillations at a frequency of 0.5 Hz were delivered by a linear motor pump into the segment through the wedged catheter. We calculated the resistance of the segment (Rseg) and partitioned Rseg into tissue viscance (i.e., proportional to the resistive pressure drop between the alveolus and the pleura) and peripheral airway resistance. Measurements were taken under baseline conditions and after delivery of increasing concentrations of aerosolized histamine (0.1 micrograms/ml to 100.0 mg/ml) into the segment. We found that the histamine responsiveness of the peripheral airways and lung tissues varied markedly within a given dog. In four of eight dogs the airways were more responsive to histamine, in three of eight the tissues were more responsive, and in one of eight the response was equivalent at the two sites. We conclude that in a given animal, there is marked heterogeneity in the histamine responsiveness of the peripheral airways and parenchymal tissues and that either may dominate responsiveness in the peripheral lung.  相似文献   

5.
We studied the effects of the flow of dry air on collateral tone in the lung periphery. A bronchoscope was wedged in sublobar segments of anesthetized dogs, and measurements of collateral resistance (Rcs) were recorded before and after flow was increased from 200 to 2,000 ml/min for a 5-min period. Five minutes after exposure was completed, Rcs increased by an average of 117 +/- 25.2% (SE) over control. Maximum Rcs occurred 5 min after the challenge was concluded and required 48 +/- 10.5 min to return to base line. When flow rate was held constant and exposure period varied, Rcs increased with increased stimulus duration. With exposure times held constant, the response of the collateral system was positively associated with changes in stimulus strength (flow rate). No refractory period was observed with repetitive challenges. Finally, when dry air (delivered at 22 degrees C) and conditioned air (i.e., delivered at 28 degrees C; relative humidity = 80%) challenges were alternated in the same wedged segment, dry air produced a mean increase in Rcs of 93.2%, whereas challenge with warm moist air increased Rcs only 33.5%. Regardless of which challenge was presented first, dry air consistently produced a greater constrictor response. This response is similar to that observed in cold air- and exercise-induced asthma and indicates that the lung periphery in dogs, like larger airways in asthmatic subjects, has the potential to increase tone when exposed to dry air. Peripheral airways in dogs thus constitute a model that can be used for the investigation of exercise-induced asthma.  相似文献   

6.
We studied collateral flow resistance in exsanguinated, excised lower lobes and accessory lobes of dog and horse lungs, respectively. A double lumen catheter obstructed a peripheral airway isolating a segment of the lobe. Oxygen flowed into the segment via a rotameter which measured flow (Vcoll) while the inner catheter recorded segment pressure (Ps). Gas delivered into the segment flowed out via collateral channels. Collateral flow resistance was calculated as (Ps - PL)/Vcoll, where PL = static transpulmonary pressure. Rcoll at PL = 20, 10, and 5 cm H2O averaged 0.24, 1.25, and 2.65 cmH2O.ml-1.s, respectively, in the dog, and 4.53, 6.00, and 12.62 cmH2O.ml-1.s in the horse. At a given PL, Rcoll measured during inflation. At constant PL, Rcoll increased with time at PL = 5 and 10 cmH2O, but was not time dependent at PL = 20 cmH2O. At constant PL, Rcoll increased at Vcoll increased. We conclude Rcoll is greater in horses than in dogs and is a function of PL, Ps - PL, and lung volume history in both species.  相似文献   

7.
We have developed a technique for installing alveolar capsules in dogs with intact chest wall, by exposing a region of parietal pleura between a pair of ribs and gluing the parietal and visceral pleura together around a small region of lung. This allows the direct measurement of alveolar pressure during spontaneous breathing. We measured alveolar pressure in normal dogs using this technique while suddenly interrupting flow at the trachea during passive expiration. Tracheal pressure exhibited a very rapid rise immediately on interruption that we showed to be composed of two distinct and roughly equal parts: one was the resistive pressure drop across the airways, and the other was a resistive pressure drop across tissues. By simultaneously measuring pleural pressure we showed that the tissues responsible were only in the chest wall and not in the lungs.  相似文献   

8.
We studied the effect of increasing airway resistance on equilibration of airway and alveolar pressure during passive expiratory airflow interruption. In 10 anesthetized and paralyzed rabbits, airway and alveolar pressures were compared before and after airway resistance was increased with methacholine. In all studies, airway pressure rose to equilibrate with alveolar pressure immediately after the interruption (delta Pinit) regardless of increases in airway resistance. The pressures then remained equal during the interruption while gradually increasing to plateau (delta Pdiff). Before methacholine exposure, delta Pdiff was small (0.6 +/- 0.3 cmH2O). Steady-state resistance calculated from the sum of delta Pinit and delta Pdiff was similar to airway resistance calculated from delta Pinit alone. After methacholine, increased airway resistance was accompanied by increased delta Pdiff (2.0 +/- 0.5 cmH2O), causing disproportionate increase in steady-state resistance. delta Pdiff increases were equal in the airway and alveoli, implying resistive changes distal to the sampled alveoli. Thus increasing airway resistance did not delay pressure equilibration across airways. However, increases in airway resistance were accompanied by tissue resistive changes that were greater than the increases in airway resistance.  相似文献   

9.
The interrupter method for measuring respiratory system resistance involves interrupting flow at the airway opening and measuring the resultant changes in pressure. We have recently shown (J. Appl. Physiol. 65: 408-414, 1988) that in open-chest mongrel dogs, under control conditions, the initial rapid pressure change (delta Pinit) reflects conducting airway resistance and the subsequent gradual pressure change (delta Pdif) reflects stress recovery of the tissues. We questioned whether the same interpretation would apply after induced constriction. Accordingly, we performed interruption experiments on anesthetized, paralyzed, tracheostomized, open-chest mongrel dogs during passive expiration, measuring pressure at the trachea and in three different alveolar regions with alveolar capsules. We recorded measurements before and after the administration of increasing concentrations of histamine aerosol (0.1-30.0 mg/ml). We found a significant increase in the heterogeneity of alveolar pressures during the relaxed expiration with increasing concentrations of histamine. Despite the introduction of significant mechanical heterogeneities, delta Pinit still reflected the pressure drop as the result of the resistance of the conducting airways. delta Pdif, however, reflected a combination of the stress recovery of the tissues and pendelluft.  相似文献   

10.
Following ozone (O3) exposure, airways reactivity increases. We investigated the possibility that exposure to O3 causes a decrease in pulmonary perfusion, and that this decrease is associated with the increase in reactivity. Perfusion was measured with radiolabeled microspheres. A wedged bronchoscope was used to isolate sublobar segments in the middle and lower lobes of anesthetized dogs. Isolated segments were exposed to either O3 or an elevated alveolar pressure. Although increased alveolar pressure decreased microsphere density, exposure to 1 ppm O3 did not. Collateral system resistance rose significantly following exposure to O3 and to high pressure. These studies do not support the hypothesis that pulmonary perfusion is decreased following O3 exposure and is associated with subsequent increases in reactivity.  相似文献   

11.
Tonic beta-sympathetic activity in the lung periphery in anesthetized dogs   总被引:1,自引:0,他引:1  
The present study was undertaken to determine whether beta-adrenoceptors could be physiologically detected in the lung periphery and whether they were under tonic stimulation in the resting state in anesthetized dogs. A fiberoptic bronchoscope was wedged in a sublobar segment of lung in anesthetized male mongrel dogs for measurement of resistance through the collateral system (Rcs). beta-Agents were delivered locally as aerosols through the bronchoscope, and the response was evaluated by changes in Rcs. Distilled water alone produced a mean increase of 8.5 +/- 2.43% (SE) in Rcs at 2 min in six dogs, whereas dl-isoproterenol produced a mean decrease of 8.9 +/- 2.10% (P less than 0.03), thus demonstrating the presence of submaximally stimulated beta-receptors. To test whether the beta-receptors were under tonic stimulation, we compared the effect of aerosolized d- and dl-propranolol in 5 dogs. d-Propranolol that lacks significant beta-blocking activity and dl-propranolol both produced large transient increases in Rcs. However, with d-propranolol, Rcs had returned to base line at 15 min, whereas with dl-propranolol Rcs remained elevated at a mean of 20% above base line for greater than 2 h (P less than 0.01). Local timolol aerosol also produced a sustained increase in Rcs. After pretreatment with reserpine or after bilateral adrenalectomy, both d- and dl-propranolol still produced large transient increases in Rcs, but dl-propranolol no longer produced a sustained increase. Neither isoproterenol nor atropine affected Rcs in the presence of dl-propranolol, nor did pretreatment with atropine affect the response of Rcs to dl-propranolol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of changing segment pressure (Ps) and airway opening pressure (Pao) on flow through a collaterally ventilating lung segment was evaluated in intact and excised dog lungs. He, N2, and SF6 were passed through the lung segment distal to a catheter wedged in a peripheral airway at driving pressures (Ps - Pao) between 0.25 and 2 cm H2O. Eight excised caudal lobes were studied at Pao = 5, 10, and 15 cm H2O. Flow was directly related to Ps - Pao and Pao and inversely related to the density of the gas. A dimensionless plot of the driving pressure normalized to a reference dynamic pressure as a function of Reynolds number (Re) indicated that flow through the segment behaved as if it were laminar at Re less than 100 and that increasing Pao increased the dimension of the pathways conducting flow as shown previously. Small changes in Ps had no effect on pathway geometry or on the pattern of flow through the segment at Pao = 10 and 15 cmH2O. At Pao = 5 cm H2O increasing segment pressure appeared to increase the dimensions of the flow pathways slightly. Similar changes in Ps - Pao had no consistent effect on flow pattern or pathway geometry in six anesthetized, paralyzed, vagotomized dogs at functional residual capacity or after widely opening the chest (Pao = 5 cm H2O). These results suggest that, at large lobe volumes, airways (including collateral pathways) are maximally dilated and therefore relatively insensitive to small changes in segment pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The interrupter method for measuring respiratory system resistance involves rapidly interrupting flow at the mouth while measuring the pressure just distal to the point of interruption. The pressure signal observed invariably exhibits two distinct phases. The first phase is a very rapid jump, designated delta Pinit, which occurs immediately on interruption of flow. The second phase is designated delta Pdif and is a further pressure change in the same direction as delta Pinit but evolving over several seconds. The physiological interpretations of delta Pinit and delta Pdif have been somewhat unclear. Delta Pinit has been taken to equal the pressure drop across the pulmonary airways, possibly with a contribution from the tissues of the respiratory system. Delta Pdif can arise, in principle, from two sources: gas redistribution throughout the lung after interruption of flow and stress recovery within the tissues. To resolve these issues we performed interruption experiments on anesthetized paralyzed, tracheotomized, open-chest normal dogs during passive expiration while measuring alveolar pressures at three sites with alveolar capsules. We found that, in the absence of the chest wall, delta Pinit reflects only the resistance of the airways and that delta Pdif can be ascribed almost entirely to the stress recovery properties of lung tissues.  相似文献   

14.
We examined whether wedging a catheter (0.5 cm OD) into a subsegmental airway in dog (n = 6) or pig lungs (n = 5) and increasing pressure in the distal lung segment affected pulmonary blood flow. Dogs and pigs were anesthetized and studied in the prone position. Pulmonary blood flow was measured by injecting radiolabeled microspheres (15 microns diam) into the right atrium when airway pressure (Pao) was 0 cmH2O and pressure in the segment distal to the wedged catheter (Ps) was 0, 5, or 15 cmH2O and when Pao = Ps = 15 cmH2O. The lungs were excised, air-dried, and sectioned. Blood flow per gram dry weight normalized to cardiac output to the right or left lung, as appropriate, was calculated for the test segment, a control segment in the opposite lung corresponding anatomically to the test segment, the remainder of the lung containing the test segment (test lung), and the remainder of the lung containing the control segment (control lung). The presence of the catheter reduced blood flow in the test segment compared with that in the control segment and in the test lung. Blood flow was not affected by increasing pressure in the test segment. We conclude that, in studies designed to measure collateral ventilation in dog lungs, the presence of the wedged catheter is likely to have a greater effect on blood flow than the increase in pressure associated with measuring collateral airway resistance.  相似文献   

15.
We attempted to estimate the pressure-volume characteristics of airways downstream from the choke point when the airflow was abruptly interrupted during forced expiration. The change of gas volume of the downstream segment after interruption could be estimated by multiplying the maximum flow (Vmax) immediately before interruption by the interruption time because the Vmax is maintained for a short period after airflow interruption at the mouth, as described in our previous report (J. Appl. Physiol. 66: 509-517, 1989). For the pressure of the downstream segment, we used the mouth pressure itself. Airway compliance, a slope of the pressure-volume curve, was measured in an airway model in eight normal subjects, in six patients with chronic obstructive pulmonary disease (COPD), and in one patient with tracheobronchopathia osteochondroplastica. Airway compliance was 0.96 ml/cmH2O in normal subjects and 2.49 ml/cmH2O in COPD patients. This difference of airway compliance was believed to be caused by the longitudinal expansion of the downstream segment and changes in the properties of the airway wall.  相似文献   

16.
In the West model of zonal distribution of pulmonary blood flow, increases in flow down zone 2 are attributed to an increase in driving pressure and a decrease in resistance resulting from recruitment and distension. The increase in flow down zone 3 is attributed to a decrease in resistance only. Recent studies indicate that, besides the pressure required to maintain flow through a vessel, there is an added pressure cost that must be overcome in order to initiate flow. These additional pressure costs are designated critical pressures (Pcrit). Because Pcrit exceed alveolar pressure, the distinction between zones in the West model becomes less secure, and the explanation for the increase in flow even in West zone 3 requires reexamination. We used two methods to test the hypothesis that the Pcrit is the pertinent backpressure to flow even in zone 3, when the pulmonary venous pressure (Ppv) exceeds alveolar pressure (PA) but is less than Pcrit in the isolated canine left caudal lobe. First, PA was maintained at 5 cmH2O, and pressure flow (P-Q) characteristics were obtained in zone 2 and zone 3. Next, with PA still at 5 cmH2O, we maintained a constant flow and measured the change in pulmonary arterial pressure as Ppv was varied. Both techniques indicated that the pertinent backpressure to flow was the greater of either Pcrit or Ppv and that PA was never the pertinent backpressure to flow. Also, our results indicate no significant change in the geometry of the flow channels between zone 2 and zone 3. These findings refine the zonal model of the pulmonary circulation.  相似文献   

17.
We study the arterial and venous circulation of the normal leg by strain gauge plethysmography and venous occlusion (thigh tourniquet). We propose the application of a simplified linear physical model of the venous circulation. It helps to analyse the plethysmographic data recorded during and after the congestion. It ignores the arterial inflow and consider the post-occlusive venous volume decay in function of time as being monoexponential. The venous compliance (C) is measured when the volume has reached a steady-state level during the congestion (known pressure). The time-constant (T) characterizes the volume decay in function of time when the occlusion is released. The tourniquet is successively inflated with two levels of pressure (30 and 60 mm Hg) in order to check if the system is actually linear as predicted by the model. The venous outflow is not strictly monoexponential and the model is only suitable to describe the beginning of the curve. The compliance does not behave linearly, the values measured at 30 mm Hg, being higher than at 60 mm Hg ($ 26%). The time-constant T is slightly influenced by the level of pressures. The calculated resistance is therefore lower at low pressure. We also study the arterial inflow before and after the venous congestion (3 min, 60 mm Hg). We observe a post-venous occlusion hyperaemia (mean rest flow: 5.2%/min, mean hyperemic flow: 12.1%/min) followed by a drop of the inflow (mean minimal flow: 3.4%/min). We evaluate the quantitative influence of neglecting the arterial inflow on the computing of the venous properties. The simplification appears acceptable.  相似文献   

18.
The acute effects of cigarette smoke or drug inhalation on collateral conductance (Gcoll) were studied in freshly excised dog lobes held at fixed volumes. A double-lumen catheter was wedged into a segmental bronchus, and air, smoke, or aerosol flowed into the blocked segment at a constant pressure of 2 cmH2O. A capsule glued over a small area of perforated pleura of the segment was used to measure alveolar pressure; the capsule could also be used to measure small airway flow (Vcap) through the segment. Gcoll was almost linearly dependent on lung volume, rising about fivefold between 20 and 100% inflation (30 cmH2O). During smoke inhalation Gcoll began decreasing almost immediately, roughly halving with the first cigarette and falling to about 20% after two cigarettes. Similar proportions were obtained at other lung volumes. Pulmonary conductance (oscillator) in the remainder of the lobe decreased only modestly to 78% of control after two cigarettes. In lobes exposed to 4.5% CO2 after air Gcoll rose 25-50%, but Vcap increased only 5-10%. However, acetylcholine chloride aerosol reduced both flows by similar ratios. Isoproterenol did not prevent or reverse smoke-induced collateral constriction but did reverse the effects of acetylcholine on both pathways. These results suggest that in excised lungs aerosols acted on larger segmental airways in series with collateral channels and with peripheral airways, whereas CO2 and particularly cigarette smoke provoked more marked effects on the most distal smooth muscle.  相似文献   

19.
To more precisely measure the mechanical properties of the lung periphery in asthma, we have developed a forced oscillation technique that applies a broad-band flow signal through a wedged bronchoscope. We interpreted the data from four healthy and eight mildly asthmatic subjects in terms of an anatomically accurate computer model of the wedged segment. There was substantial overlap in impedance between the two groups, with resistance (R) showing minimal frequency dependence and elastance (E) showing positive and negative frequency dependence across subjects. After direct instillation of methacholine, R rose in both groups, but compared with healthy subjects, the asthmatic subjects displayed upward, parallel shifts in their dose-response curves. The baseline frequency-response patterns of E were enhanced after methacholine. Frequency dependencies of R and E were well reproduced in two normal subjects by a computational model that employed rigid airways connected to constant-phase tissue units but were better reproduced in the other two normal and three asthmatic subjects when the model employed heterogeneous, peripheral airway narrowing and compliant airways. To capture the frequency dependencies of R and E in the remaining five asthmatic subjects, the model was modified by increasing airway wall stiffness. These results indicate that the lung periphery of mildly asthmatic subjects is not well distinguished from that of healthy subjects by measurement of mechanical impedance at baseline, but group differences are seen after challenge with methacholine. Modeling of the response suggests that variable contributions of airway narrowing and wall compliance are operative in determining overall mechanical impedance of the lung periphery in humans with asthma, likely reflecting the functional consequences of airway inflammation and remodeling.  相似文献   

20.
We examined the influence of changing outflow pressure, P out, on the vascular and extravascular volumes (QV and QEV, respectively, as measured by indicator dilution) and on the outflow occlusion pressures in isolated dog lung lobes perfused with constant flow. Changing P out had a substantial effect on QV, but not on QEV, whether P out was less than or greater than alveolar pressure, PA. Since QEV did not change with QV, recruitment of previously unperfused vessels did not appear to contribute substantially to the increases in QV when P out was increased. The rapid jump in P out immediately following outflow occlusion was virtually independent of the difference between PA and P out suggesting that the alveolar vessels were an important volume storage site when P out was low relative to PA. We conclude that, over a certain range of pressures, alveolar vessel volume can be controlled by venous pressure even when the change in venous pressure has little effect on arterial pressure (zone 2). Further, we conclude that in zone 3 and within the transition from zone 2 to zone 3 increases in the intralobar blood volume occurring within the alveolar vessels may not require recruitment in the sense of opening of previously unperfused vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号