首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxyl radicals, redox-sensitive signalling cascades and antioxidants   总被引:6,自引:0,他引:6  
Oxidative stress is an increase in the reduction potential or a large decrease in the reducing capacity of the cellular redox couples. A particularly destructive aspect of oxidative stress is the production of reactive oxygen species (ROS), which include free radicals and peroxides. Some of the less reactive of these species can be converted by oxidoreduction reactions with transition metals into more aggressive radical species that can cause extensive cellular damage. In animals, ROS may influence cell proliferation, cell death (either apoptosis or necrosis) and the expression of genes, and may be involved in the activation of several signalling pathways, activating cell signalling cascades, such as those involving mitogen-activated protein kinases. Most of these oxygen-derived species are produced at a low level by normal aerobic metabolism and the damage they cause to cells is constantly repaired. The cellular redox environment is preserved by enzymes and antioxidants that maintain the reduced state through a constant input of metabolic energy. This review summarizes current studies that have been regarding the production of ROS and the general redox-sensitive targets of cell signalling cascades.  相似文献   

2.
3.
Cellular redox signalling is mediated by the post-translational modification of proteins in signal-transduction pathways by ROS/RNS (reactive oxygen species/reactive nitrogen species) or the products derived from their reactions. NO is perhaps the best understood in this regard with two important modifications of proteins known to induce conformational changes leading to modulation of function. The first is the addition of NO to haem groups as shown for soluble guanylate cyclase and the newly discovered NO/cytochrome c oxidase signalling pathway in mitochondria. The second mechanism is through the modification of thiols by NO to form an S-nitrosated species. Other ROS/RNS can also modify signalling proteins although the mechanisms are not as clearly defined. For example, electrophilic lipids, formed as the reaction products of oxidation reactions, orchestrate adaptive responses in the vasculature by reacting with nucleophilic cysteine residues. In modifying signalling proteins ROS/RNS appear to change the overall activity of signalling pathways in a process that we have termed 'redox tone'. In this review, we discuss these different mechanisms of redox cell signalling, and give specific examples of ROS/RNS participation in signal transduction.  相似文献   

4.
NAD(+) is well known as a crucial cofactor in the redox balance of metabolism. Moreover, NAD(+) is degraded in ADP-ribosyl transfer reactions, which are important components of multitudinous signalling reactions. These include reactions linked to DNA repair and aging. In the present study, using the concept of EFMs (elementary flux modes), we established all of the potential routes in a network describing NAD(+) biosynthesis and degradation. All known biosynthetic pathways, which include de novo synthesis starting from tryptophan as well as the classical Preiss-Handler pathway and NAD(+) synthesis from other vitamin precursors, were detected as EFMs. Moreover, several EFMs were found that degrade NAD(+), represent futile cycles or have other functionalities. The systematic analysis and comparison of the networks specific for yeast and humans document significant differences between species with regard to the use of precursors, biosynthetic routes and NAD(+)-dependent signalling.  相似文献   

5.
Reactive Oxygen Species and Regulation of Gene Expression   总被引:15,自引:0,他引:15  
  相似文献   

6.
7.
Affinity labeling of the NAD-binding site of chicken liver xanthine dehydrogenase by 5'-p-fluorosulfonylbenzoyladenosine (5'-FSBA) caused spectral perturbation around 450 nm in the same way as NAD. Reductive titration with xanthine of native xanthine dehydrogenase in the presence of NAD showed that redox potentials of the FAD/FADH. and FADH./FADH2 couples were shifted positive by NAD binding to the enzyme. The redox potentials of these couples were also shifted to some extent by modification of the NAD-binding site with 5'-FSBA. These results provide further evidence that binding of NAD to chicken liver xanthine dehydrogenase modulates the reactivity of the enzyme by shifting the redox potential of FAD. Proteolytic cleavage of the [14C]-5'-FSBA-modified enzyme yielded several domain peptides, only one of which contained radioactivity. The isolated radioactive peptide was further digested with Staphylococcus aureus protease and the 14C-labeled peptide was purified by two steps of high performance liquid chromatography. The amino acid sequence of the peptide was determined, and a reactive tyrosine residue was identified.  相似文献   

8.
Ammonium nutrition has been suggested to be associated with alterations in the oxidation‐reduction state of leaf cells. Herein, we show that ammonium nutrition in Arabidopsis thaliana increases leaf NAD(P)H/NAD(P)+ ratio, reactive oxygen species content and accumulation of biomolecules oxidized by free radicals. We used the method of rapid fractionation of protoplasts to analyse which cellular compartments were over‐reduced under ammonium supply and revealed that observed changes in NAD(P)H/NAD(P)+ ratio involved only the extrachloroplastic fraction. We also showed that ammonium nutrition changes mitochondrial electron transport chain activity, increasing mitochondrial reactive oxygen species production. Our results indicate that the functional impairment associated with ammonium nutrition is mainly associated with redox reactions outside the chloroplast.  相似文献   

9.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.  相似文献   

10.
植物过氧化物酶体在活性氧信号网络中的作用   总被引:2,自引:0,他引:2  
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species, ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

11.
Transhydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. Coupling is achieved through changes in protein conformation. Upon mixing, the isolated nucleotide-binding components of transhydrogenase (dI, which binds NAD(H), and dIII, which binds NADP(H)) form a catalytic dI(2).dIII(1) complex, the structure of which was recently solved by x-ray crystallography. The fluorescence from an engineered Trp in dIII changes when bound NADP(+) is reduced. Using a continuous flow device, we have measured the Trp fluorescence change when dI(2).dIII(1) complexes catalyze reduction of NADP(+) by NADH on a sub-millisecond scale. At elevated NADH concentrations, the first-order rate constant of the reaction approaches 21,200 s(-1), which is larger than that measured for redox reactions of nicotinamide nucleotides in other, soluble enzymes. Rather high concentrations of NADH are required to saturate the reaction. The deuterium isotope effect is small. Comparison with the rate of the reverse reaction (oxidation of NADPH by NAD(+)) reveals that the equilibrium constant for the redox reaction on the complex is >36. This high value might be important in ensuring high turnover rates in the intact enzyme.  相似文献   

12.
Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg‐AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg‐AD neurons. We also observed an age‐dependent loss of gene expression of key redox‐dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age‐related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age‐related declines in NAD(P)H. Our data indicate that in aging and more so in AD‐like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS.  相似文献   

13.
Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs) or connexons, which dock head-to-head with partner hexameric channels positioned on neighbouring cells. The double membrane channel or gap junction generated directly couples the cytoplasms of interacting cells and underpins the integration and co-ordination of cellular metabolism, signalling and functions, such as secretion or contraction in cell assemblies. In contrast, CxHcs prior to forming gap junctions provide a pathway for the release from cells of ATP, glutamate, NAD+ and prostaglandin E2, which act as paracrine messengers. ATP activates purinergic receptors on neighbouring cells and forms the basis of intercellular Ca2+ signal propagation, complementing that occuring more directly via gap junctions. CxHcs open in response to various types of external changes, including mechanical, shear, ionic and ischaemic stress. In addition, CxHcs are influenced by intracellular signals, such as membrane potential, phosphorylation and redox status, which translate external stresses to CxHc responses. Also, recent studies demonstrate that cytoplasmic Ca2+ changes in the physiological range act to trigger CxHc opening, indicating their involvement under normal non-pathological conditions. CxHcs not only respond to cytoplasmic Ca2+, but also determine cytoplasmic Ca2+, as they are large conductance channels, suggesting a prominent role in cellular Ca2+ homoeostasis and signalling. The functions of gap-junction channels and CxHcs have been difficult to separate, but synthetic peptides that mimic short sequences in the Cx subunit are emerging as promising tools to determine the role of CxHcs in physiology and pathology.  相似文献   

14.
15.
Koch-Nolte F  Fischer S  Haag F  Ziegler M 《FEBS letters》2011,585(11):1651-1656
NAD(+) plays central roles in energy metabolism as redox carrier. Recent research has identified important signalling functions of NAD(+) that involve its consumption. Although NAD(+) is synthesized mainly in the cytosol, nucleus and mitochondria, it has been detected also in vesicular and extracellular compartments. Three protein families that consume NAD(+) in signalling reactions have been characterized on a molecular level: ADP-ribosyltransferases (ARTs), Sirtuins (SIRTs), and NAD(+) glycohydrolases (NADases). Members of these families serve important regulatory functions in various cellular compartments, e.g., by linking the cellular energy state to gene expression in the nucleus, by regulating nitrogen metabolism in mitochondria, and by sensing tissue damage in the extracellular compartment. Distinct NAD(+) pools may be crucial for these processes. Here, we review the current knowledge about the compartmentation and biochemistry of NAD(+)-converting enzymes that control NAD(+) signalling.  相似文献   

16.
Unwanted enzyme side reactions and spontaneous decomposition of metabolites can lead to a build-up of compounds that compete with natural enzyme substrates and must be dealt with for efficient metabolism. It has recently been realized that there are enzymes that process such compounds, formulating the concept of metabolite repair. NADH and NADPH are vital cellular redox cofactors but can form non-functional hydrates (named NAD(P)HX) spontaneously or enzymatically that compete with enzymes dependent on NAD(P)H, impairing normal enzyme function. Here we report on the functional characterization of components of a potential NAD(P)H repair pathway in plants comprising a stereospecific dehydratase (NNRD) and an epimerase (NNRE), the latter being fused to a vitamin B6 salvage enzyme. Through the use of the recombinant proteins, we show that the ATP-dependent NNRD and NNRE act concomitantly to restore NAD(P)HX to NAD(P)H. NNRD behaves as a tetramer and NNRE as a dimer, but the proteins do not physically interact. In vivo fluorescence analysis demonstrates that the proteins are localized to mitochondria and/or plastids, implicating these as the key organelles where this repair is required. Expression analysis indicates that whereas NNRE is present ubiquitously, NNRD is restricted to seeds but appears to be dispensable during the normal Arabidopsis life cycle.  相似文献   

17.
Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend on redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide, and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but nonequilibrium steady states, are largely independently regulated in different subcellular compartments, and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential, and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways, and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.  相似文献   

18.
Plants perceive biotic stimuli by recognising a multitude of different signalling compounds originating from the interacting organisms. Some of these substances represent pathogen-associated molecular patterns, which act as general elicitors of defence reactions. But also beneficial microorganisms like rhizobia take advantage of compounds structurally related to certain elicitors, i.e. Nod-factors, to communicate their presence to the host plant. In a bioassay-based study we aimed to determine to what extent distinct oligosaccharidic signals are able to elicit overlapping responses, including the emission of volatile organic compounds which is mainly considered a typical mode of inducible indirect defence against herbivores. The model legume Medicago truncatula Gaertn. was challenged with pathogen elicitors (beta-(1,3)-beta-(1,6)-glucans and N,N',N',N'-tetraacetylchitotetraose) and two Nod-factors, with one of them being able to induce a nodulation response in M. truncatula. Single oligosaccharidic elicitors caused the emission of volatile organic compounds, mainly sesquiterpenoids. The volatile blends detected were quite characteristic for the applied compounds, which could be pinpointed by multivariate statistical methods. As potential mediators of this response, the levels of jasmonic acid and salicylic acid were determined. Strikingly, neither of these phytohormones exhibited changing levels correlating with enhanced volatile emission. All stimuli tested caused an overproduction of reactive oxygen species, whereas nitric oxide accumulation was only effected by elicitors that were equally able to induce volatile emission. Thus, all signalling compounds tested elicited distinct reaction patterns. However, similarities between defence reactions induced by herbivory and pathogen-derived elicitors could be ascertained; but also Nod-factors were able to trigger defence-related reactions.  相似文献   

19.
Mitochondrial retrograde regulation in plants   总被引:5,自引:0,他引:5  
Plant cells must react to a variety of adverse environmental conditions that they may experience on a regular basis. Part of this response centers around (1) ROS as damaging molecules and signaling molecules; (2) redox status, which can be influenced by ROS production; and (3) availability of metabolites. All of these are also likely to interface with changes in hormone levels [Desikan, R., Hancock, J., Neill, S., 2005. Reactive oxygen species as signalling molecules. In: Smirnoff, N. (ed.), Antioxidants and reactive oxygen species in plants. Blackwell Pub. Ltd., Oxford, pp. 169-196; Kwak, J.M., Nguyen, V., Schroeder, J.I., 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141, 323-329]. Each of these areas can be strongly influenced by changes in mitochondrial function. Such changes trigger altered nuclear gene expression by a poorly understood process of mitochondrial retrograde regulation (MRR), which is likely composed of several distinct signaling pathways. Much of what is known about plant MRR centers around the response to a dysfunctional mtETC and subsequent induction of genes encoding proteins involved in recovery of mitochondrial functions, such as AOX and alternative NAD(P)H dehydrogenases, and genes encoding enzymes aimed at regaining ROS level/redox homeostasis, such as glutathione transferases, catalases, ascorbate peroxidases and superoxide dismutases. However, as evidence of new and interesting targets of MRR emerge, this picture is likely to change and the complexity and importance of MRR in plant responses to stresses and the decision for cells to either recover or switch into programmed cell death mode is likely to become more apparent.  相似文献   

20.
Photosynthetic organisms undergo photoacclimation in response to changes in environmental conditions to maximize energy production and at the same time protect the light-sensitive pigments and proteins from excess light. Low temperature and high irradiance both cause the electron transport chain to become more reduced which can result in the production of damaging reactive oxygen species. In the unicellular green alga Chlorella vulgaris Beij., light and temperature regulate light-harvesting protein accumulation via the redox state of the plastoquinone pool. To investigate temperature-dependent factor (s) regulating light-harvesting protein accumulation we measured the abundance of chlorophyll biosynthetic precursors and reactive oxygen species production in C. vulgaris cells acclimated to a series of growth conditions. We observed that Mg-protoporphyrin accumulates in response to low temperature, but its abundance does not correlate with light-harvesting protein levels. Reactive oxygen levels measured under the same growth conditions strongly correlated with light-harvesting protein levels. Therefore, we suggest that reactive oxygen species may act as part of both a temperature- and irradiance-dependent signalling mechanism in the regulation of light-harvesting protein accumulation in response to growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号