首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human umbilical vein endothelial cells and fibroblasts were grown in tissue culture (with and without added endothelial cell growth supplement) to confluence. von Willebrand factor antigen was measured in supernatants every 24 hours. Cells grown in medium with growth supplement reached confluence before those grown without the supplement. von Willebrand factor antigen release was greatest under both sets of conditions when cells were in their most active growth phase, and rate of release slowed when cells were confluent. Fibroblasts grew more rapidly, showed a small response to the growth supplement, but supernatant von Willebrand factor antigen could not be detected. The implications of these findings for atherogenesis are discussed.  相似文献   

2.
Polar secretion of von Willebrand factor by endothelial cells   总被引:2,自引:0,他引:2  
Human umbilical vein endothelial cells cultured on a collagen lattice were used to study the polarity of von Willebrand factor (vWF) secretion. Endothelial cells cultured under these conditions allow direct measurements of substances released at both the apical and basolateral surface. The constitutive secretion of vWF was compared to the release of vWF from their storage granules after stimulation (regulated secretion). The basal, constitutive release of vWF occurs into both the apical and subendothelial direction. The rate of accumulation of vWF to the subendothelial direction is about three times higher than the amount of vWF secreted into the lumenal medium per unit of time. However, upon stimulation of confluent endothelial cell monolayers with phorbol myristate acetate, endothelial cells predominantly secrete vWF at the lumenal surface. Under these conditions, vWF does not accumulate in the collagen matrix. Thus, endothelial cells are able to organize themselves into a polarized monolayer, in such a way that vWF secreted by the regulated pathway accumulates at the lumenal site, whereas resting endothelial cells release vWF predominantly at the opposite, basolateral surface.  相似文献   

3.
ATP and its degradation products play an important role as signaling molecules in the vascular system, and endothelial cells are considered to be an important source of nucleotide release. To investigate the mechanism and physiological significance of endothelial ATP release, we compared different pharmacological stimuli for their ability to evoke ATP release from first passage cultivated human umbilical vein endothelial cells (HUVECs). Agonists known to increase intracellular Ca(2+) levels (A23187, histamine, thrombin) induced a stable, non-lytic ATP release. Since thrombin proved to be the most robust and reproducible stimulus, the molecular mechanism of thrombin-mediated ATP release from HUVECs was further investigated. ATP rapidly increased with thrombin (1 U/ml) and reached a steady-state level after 4 min. Loading the cells with BAPTA-AM to capture intracellular calcium suppressed ATP release. The thrombin-specific, protease-activated receptor 1 (PAR-1)-specific agonist peptide TFLLRN (10 μM) fully mimicked thrombin action on ATP release. To identify the nature of the ATP-permeable pathway, we tested various inhibitors of potential ATP channels for their ability to inhibit the thrombin response. Carbenoxolone, an inhibitor of connexin hemichannels and pannexin channels, as well as Gd(3+) were highly effective in blocking the thrombin-mediated ATP release. Specifically targeting connexin43 (Cx43) and pannexin1 (Panx1) revealed that reducing Panx1 expression significantly reduced ATP release, while downregulating Cx43 was ineffective. Our study demonstrates that thrombin at physiological concentrations is a potent stimulus of endothelial ATP release involving PAR-1 receptor activation and intracellular calcium mobilization. ATP is released by a carbenoxolone- and Gd(3+)- sensitive pathway, most likely involving Panx1 channels.  相似文献   

4.
The vasopressin analogue 1-deamino-8-D-arginine vasopressin (DDAVP) causes an immediate, transient rise in plasma levels of von Willebrand factor (vWF) after its administration. Although it is recognized that vascular endothelial cells play an essential role in this process, the molecular basis of the response is not understood. We have investigated the phenomenon using human umbilical vein endothelial cells as an in vitro model. When normal individuals were stimulated with DDAVP, plasma from blood samples collected subsequently caused the release of vWF from cultured endothelial cells over a 24 h period (22-46% increase over baseline), compared to control plasma (5-17%). DDAVP added directly to the endothelial cells produced no increase in vWF release. When whole blood was treated in vitro with DDAVP, and the plasma subsequently added to endothelial cells, a significant increase in vWF secretion was found. Peripheral blood mononuclear cells were then tested. In the presence of DDAVP, an increased response occurred. Further fractionation of these cells showed that monocytes were largely responsible, causing an increased vWF release of 162% at 2 h. These observations were reinforced by finding that the supernatants of monocytes incubated with DDAVP were also effective in causing increased vWF release (118% compared to 58% for the control sample). Our studies suggest that DDAVP plays an indirect role in causing the release of vWF from endothelial cells, and that peripheral blood monocytes may act as intermediary target cells, which then produce factor(s) acting directly on endothelial cells.  相似文献   

5.
Angiotensin II (ANG II) has been etiologically linked to vascular disease; however, its role in the alterations of endothelial function that occur in vascular disorders is not completely understood. Matrix metalloproteinases (MMPs) and proinflammatory cytokines are involved in the pathological remodeling of blood vessels that occurs in vascular disease. In this study we evaluated the effects of ANG II on tumor necrosis factor (TNF)- and MMP-2 production in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with ANG II (0.1–10 µM) for 24 h, in the presence or absence of antagonists of ANG II type 1 (AT1R) and type 2 (AT2R) receptors, and the production and release of TNF- and MMP-2 were assessed. ANG II increased TNF- mRNA and protein expression and the release of bioactive TNF-. Moreover, ANG II induced MMP-2 release and reduced the secretion of tissue inhibitor of MMP (TIMP)-2 from endothelial cells. To elucidate whether endogenous TNF- could mediate the effects of ANG II on MMP-2 release, cells were pretreated with anti-TNF- neutralizing antibodies or pentoxifylline (an inhibitor of TNF- synthesis). TNF- inhibition prevented the secretion of MMP-2 induced by ANG II. Furthermore, AT1R antagonism with candesartan prevented the formation of MMP-2 and TNF- and the reduction of TIMP-2 induced by ANG II. These results indicate that ANG II, via AT1R, modulates the secretion of TNF- and MMP-2 from endothelial cells and that TNF- mediates the effects of ANG II on MMP-2 release. remodeling; vasoactive mediators; inflammation  相似文献   

6.
We have previously shown that although DDAVP (1-deamino-8-D-arginine vasopressin), a synthetic analogue of the natural hormone arginine vasopressin, does not directly promote release of vWf from human umbilical vein endothelial cells (ECs), enhanced release does occur when ECs were exposed to either monocytes or to supernatants recovered from DDAVP-treated monocytes. In the present study, we have found that exposure of monocytes to DDAVP did not increase secretion of interleukins (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF-α), growth factors G-CSF (granulocyte-), GM-CSF (granulocyte, monocyte-colony stimulating factor), prostaglandins (PG) E2, PGF, or PGI2 or purine nucleotides such as ATP and ADP. However, increased levels of platelet-activating factor (PAF) were secreted by DDAVP-treated monocytes in a time- and dose-dependent manner that positively correlated with the enhancement in vWf release from ECs. Moreover, this effect could also be elicited when lipid extracts of these supernatants or purified PAF were added directly to ECs. This response could be inhibited with (±)-trans-2,5-Bis(3,4,5-trimethoxyphenyl)-1,3-dioxolane, a specific PAF receptor antagonist, when the ECs were exposed to supernatants from DDAVP-treated monocytes or to pure PAF. The present data indicate that enhanced secretion of PAF from monocytes is one mechanism whereby DDAVP can provoke release of vWf from ECs. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The effects of neurokinins (NK) and related peptides on the secretion of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin, were measured. These peptides enhanced three- to five-fold the basal secretion rate with the following rank order of potency (based on threshold concentrations for a significant output): substance P (SP) greater than or equal to NKA greater than SP 4-11 greater than or equal to [pGlu6]SP 6-11 = SP 7-11.NKB and SP 1-9 were inactive. Ac[Arg6, Sar9, Met(O2)11]SP, a NK1 receptor selective agonist, was more potent than other selective agonists for the NK2 and NK3 receptor subtypes. These results suggest that the NK receptors, which mediate the release of prostacyclin from human endothelial cells, belong to the NK1 subtype.  相似文献   

8.
Confluent monolayers of bovine aortic endothelial cells were examined 2-72 h after exposure to 0.5-5.0 Gy of 60Co gamma-rays. Accumulation of prostacyclin [PGI2, measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha)] in the culture media and PGI2 production stimulated by exogenous arachidonate were correlated with cell detachment and release of lactate dehydrogenase (LDH) activity. Platelet adherence to irradiated and control monolayers also was studied. There were simultaneous time- and dose-dependent increases in cell detachment and in the titers of 6-keto-PGF1 alpha and LDH activity in the culture medium. These changes were evident between 4 and 8 h after 5 Gy or at 24 h after 0.5 Gy. Four hours after 5 Gy, both adherent and detached endothelial cells showed a twofold increase in PGI2 production during a 15-min incubation with arachidonate (10 microM). However, by 72 h this increase was less significant. The accumulation of 6-keto-PGF1 alpha appeared to be related to cell destruction, but radiation also stimulated PGI2 synthesis independent of cell detachment. There was an increased platelet interaction with irradiated monolayers, as a result of platelet adherence to subendothelial matrix exposed after cell detachment. However, irradiation did not alter the nonadherent property of the endothelial cell surface toward platelets.  相似文献   

9.
Summary The synthesis and secretion of von Willebrand factor (VWF, or Factor VIII-related antigen) and fibronectin by cultured endothelial cells from rhesus monkey choroid retina were demonstrated by immunofluorescence, immunoperoxidase and single radial immunodiffusion techniques. Both VWF and fibronectin are localized in intracellular granules and extracellular fibrils. The results of double immunofluorescence staining and post-embedding immunoelectron microscopy showed that there was a co-distribution of VWF and fibronectin not only in pericellular fibrils where they co-aligned with each other to be the components of extracellular matrix, but also in intracellular granules, suggesting they were synthesized or translocated in the same compartment.  相似文献   

10.
Nagao M  Kaziro Y  Itoh H 《FEBS letters》2000,472(2-3):297-301
Thrombin has been shown to inhibit skeletal muscle differentiation. However, the mechanisms by which thrombin represses myogenesis remain unknown. Since the thrombin receptor couples to G(i), G(q/11) and G(12), we examined which subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (Galpha(i), Galpha(q/11), Galpha(12) or Gbetagamma) participate in the thrombin-induced inhibition of C2C12 myoblast differentiation. Galpha(i2) and Galpha(11) had no inhibitory effect on the myogenic differentiation. Galpha(12) prevented only myoblast fusion, whereas Gbetagamma inhibited both the induction of skeletal muscle-specific markers and the myotube formation. In addition, the thrombin-induced reduction of creatine kinase activity was blocked by the C-terminal peptide of beta-adrenergic receptor kinase, which is known to sequester free Gbetagamma. These results suggest that the thrombin-induced inhibition of muscle differentiation is mainly mediated by Gbetagamma.  相似文献   

11.
Rat liver cytosol contains a heat-stable factor which inhibits phospholipid methylation by rat liver microsomes. The effect of this factor on lipid methylation was dose- and pH-dependent. This factor has an Mr of approx. 3200 as estimated by gel filtration. It could not be extracted by chloroform/methanol (2:1, v/v), and its action was inhibited by incubation with subtilisin.  相似文献   

12.
There is a wide range of reported values for prostacyclin (PGI2) synthesis by cultured endothelial cells from human umbilical veins (HUVE). Part of this variation may be due to differences in isolation and culture conditions, but part may be due to previously unstudied variation in the number of population doublings (PDs) which the cells have undergone in vitro. Attention is now shifting to arachidonic acid (AA) metabolism by cells from adult human vessels and these cells may require increased PDs to obtain confluent cultures for testing. Therefore, we have examined the effect of number of cell population doublings as well as number of subcultivations on PGI2 synthesis using HUVE as a model system. Primary and first subcultivation cultures inoculated at high density, so that PDs at confluence were less than 4, synthesized 10 times as much PGI2 as the same isolates inoculated at low density with PDs greater than 4. Isolates inoculated and subcultivated so that the PDs at confluence after the fourth subcultivation were less than 6, showed 50% less PGI2 synthesis between the primary and first subcultivation and between the first and second subcultivations. Isolates with less than 4 PDs after the fourth subcultivation were carried further to determine the effect of extensive subcultivation. Four of six isolates showed a sudden increase in PGI2 synthesis which occurred between subcultivations 5 and 12 (PDs 4-6). These results demonstrate that AA metabolism is markedly affected by growth in culture and serial subcultivation.  相似文献   

13.
The effect of reduced temperature on the post-translational processing and stimulated release of von Willebrand factor (vWf) from human umbilical vein endothelial cells was studied. Following pulse-labeling, cells were incubated for 4 h at 18 degrees C or 20 degrees C. Post-translational processing was reversibly arrested at the dimer stage, dimers were composed of Endo H-sensitive precursor subunits, and no vWf was detected in the culture medium. This block was reversible, since warming cells to 37 degrees C relieved it and resulted in the appearance of fully processed vWf in the cells and the culture medium. The same results were obtained when cells were incubated with carbonyl cyanide m-chlorophenol hydrazone or dinitrophenol which inhibit mitochondrial oxidative phosphorylation, known to block exit of secretory proteins from the endoplasmic reticulum (ER). This indicated that ER exit is not required for the complete dimerization of vWf. Reduced temperature (18 degrees C and 20 degrees C) also reversibly and nearly completely inhibited the secretagogue-induced release of vWf from Weibel-Palade bodies without affecting the microtubular cytoskeleton. We add reduced temperature to the list of useful tools for the study of the vWf secretory pathway in endothelial cells.  相似文献   

14.
The facultative intracellular bacterium Bartonella henselae induces unique angiogenic lesions in immunocompromised hosts. To determine the role of intracellular calcium pools in B. henselae-induced endothelial cell proliferation, we generated B. henselae-conditioned medium (BCM) and tested the ability of these cell-free proteins to induce human umbilical vein endothelial cell (HUVEC) proliferation, CXCL8 production, and intracellular Ca2+ signals. HUVECs incubated with BCM for 3 days had higher cell numbers than controls. In addition, HUVECs produced increased amounts of CXCL8 in response to BCM when compared to medium controls. When BCM was added to HUVECs and the intracellular Ca2+ response measured with the calcium-sensitive dye fura-2/AM, a Ca2+ rise was demonstrated. It was determined that this Ca2+ rise originated from intracellular Ca2+ stores through the use of the Ca2+ ATPase inhibitor thapsigargin. Further, it was demonstrated that BCM enhanced CXCL8 production and HUVEC proliferation in a Ca2+-dependent manner. Conditioned medium from B. henselae causes an intracellular Ca2+ rise in HUVECs, which is involved in B. henselae-induced HUVEC proliferation and CXCL8 production. These results implicate intracellular Ca2+ pools in B. henselae-induced angiogenesis and may lead to increased understanding of the mechanisms of pathogen-induced angiogenesis.  相似文献   

15.
16.
The cytotoxic lymphocyte protease granzyme B (GrB) is elevated in the plasma of individuals with diseases that elicit a cytotoxic lymphocyte-mediated immune response. Given the recently recognized ability of GrB to cleave extracellular matrix proteins, we examined the effect of GrB on the pro-hemostatic molecule von Willebrand factor (VWF). GrB delays ristocetin-induced platelet aggregation and inhibits platelet adhesion and spreading on immobilized VWF under static conditions. It efficiently cleaves VWF at two sites within the A1-3 domains that are essential for the VWF-platelet interaction. Like the VWF regulatory proteinase ADAMTS-13, GrB-mediated cleavage is dependent upon VWF conformation. In vitro, GrB cannot cleave the VWF conformer found in solution, but cleavage is induced when VWF is artificially unfolded or presented as a matrix. GrB cleaves VWF with comparable efficiency to ADAMTS-13 and rapidly processes ultra-large VWF multimers released from activated endothelial cells under physiological shear. GrB also cleaves the matrix form of fibrinogen at several sites. These studies suggest extracellular GrB may help control localized coagulation during inflammation.  相似文献   

17.
The aim of our research was to study the influence of hydrogen peroxide on the exocytosis of von Willebrand factor (vWF) in human umbilical vein endothelial cells (HUVEC). We have found that H2O2 at a non-toxic concentration (100 μM) increases the amount of vWF secreted by HUVEC by 43 ± 14% over control (p < 0.03) and elevates total exposition of vWF on cell surface by 89 ± 5% (p < 0.01). Analysis of immunofluorescent images of HUVEC with CellProfiler program revealed that the average number of antigen positive structures on the single cell surface increases from 11.4 ± 0.16 in control up to 17.5 ± 0.21 after incubation with H2O2 (p < 0.01). vWF is exposed on the cell surface as dots with the average sizes around 1–3 μm. H2O2 causes an increase in the number of these dots and the appearence of the strings of vWF which are absent in control HUVEC. It is suggested that H2O2 may serve as a messenger which stimulates vWF exocytosis.  相似文献   

18.
Angiotensin II (Ang II) has been shown to stimulate the release of immunoreactive endothelin (ET) from cultured bovine ECs. Also, Ang II activates phospholipase A2 (PLA2) in various tissues, resulting in the release of arachidonic acid and formation of prostaglandins. We used rat aortic endothelial cells to investigate the role of protein kinase C (PKC) in Ang II-induced release of both ET and prostacyclin (PGI2). The amount of ET and PGI2 produced were determined by radioimmunoassay. Ang II-induced the release of both ET and PGI2. Pretreatment with 10(-6) M of any one of the PKC inhibitors: 1-(5-isoquinolinesulfonyl) piperazine(CL), staurosporine, 1-(5-isoquinolinesulfonylmethyl)piperazine(H7), and calphostin C blocked AII-induced release of both ET and PGI2. In rat aortic endothelial cells that were treated with either AII or PDBu, PKC enzyme assay showed PKC was translocated from the cytosol to the membrane which indicates activation. This suggests that PKC mediates AII-induced ET and PGI2 release. In summary, AII activates PKC which inhibits rat aortic endothelial cells ET and PGI2 formation, and this inhibition can be overcome by pretreatment with PKC inhibitors.  相似文献   

19.

Background

Point mutations resulting in reduced factor VIII (FVIII) binding to von Willebrand factor (VWF) are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood.

Methodology/Principal Findings

We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser) to severe (Tyr1680Phe, Ser2119Tyr) VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH.

Conclusions

Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo.  相似文献   

20.
R Busse  A Mülsch 《FEBS letters》1990,265(1-2):133-136
We investigated whether calmodulin mediates the stimulating effect of Ca2+ on nitric oxide synthase in the cytosol of porcine aortic endothelial cells. Nitric oxide was quantified by activation of a purified soluble guanylate cyclase. The Ca2(+)-sensitivity of nitric oxide synthase was lost after anion exchange chromatography of the endothelial cytosol and could only be reconstituted by addition of calmodulin or heat-denatured endothelial cytosol. The Ca2(+)-dependent activation of nitric oxide synthase in the cytosol was inhibited by the calmodulin-binding peptides/proteins melittin, mastoparan, and calcineurin (IC50 450, 350 and 60 nM, respectively), but not by the calmodulin antagonist, calmidazolium. In contrast, Ca2(+)-calmodulin-reconstituted nitric oxide synthase was inhibited with similar potency by melittin and calmidazolium. The results suggest that the Ca2(+)-dependent activation of nitric oxide synthase in endothelial cells is mediated by calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号