首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Incubation of receptor-rich membrane fragments from Torpedo marmorata with 0.1 mm-carbamylcholine for several minutes causes a subsequent decrease of the amplitude of the permeability response to this agonist, measured in vitro by following 22Na+ efflux. Acetylcholine (in the presence of 0.01 mm-tetram2) and phenyltrimethylammonium which, like carbamylcholine, behave as agonists in vitro, show the same effect, but antagonists like d-tubocurarine or decamethonium protect against this time-dependant change. The effect takes place within a few minutes, is reversible, and enhanced by a local anaesthetic, SKF-525A, and by Ca2+. In all these aspects, it appears similar to “pharmacological desensitization”. The data are interpreted in terms of the reversible model described by Katz & Thesleff (1957).  相似文献   

5.
《The Journal of cell biology》1985,101(5):1757-1762
The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.  相似文献   

6.
Rabbits were immunized with cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata. The resultant antiserum had one major antibody activity against an antigen called the Torpedo vesicle antigen. This antigen could not be demonstrated in muscle, liver or blood and is therefore, suggested to be nervous-tissue specific. The vesicle antigen was quantified in various parts of the nervous system and in subcellular fractions of the electric organ of Torpedo marmorata and was found to be highly enriched in synaptic vesicle membranes. The antigen bound to concanavalin A, thereby demonstrating the presence of a carbohydrate moiety. By means of charge-shift electrophoresis, amphiphilicity was demonstrated, indicating that the Torpedo vesicle antigen is an intrinsic membrane protein. The antigen was immunochemically unrelated to other brain specific proteins such as 14-3-2, S-100, the glial fibrillary acidic protein and synaptin. Furthermore, it was unrelated to two other membrane proteins, the nicotinic acetylcholine receptor and acetylcholinesterase, present in Torpedo electric organ. The antiserum against Torpedo synaptic vesicles did not react with preparations of rat brain synaptic vesicles or ox adrenal medullary chromaffin granules.  相似文献   

7.
One electric organ of anaesthetized Torpedo marmorata was stimulated through electrodes placed on the electric lobe of the brain. Nerves to the other electric organ were cut to provide an unstimulated control. Glucose 6-[32P]phosphate was injected into each organ 16h before electrical stimulation. After stimulation for 10 min at 5 Hz, the organs were removed homogenized and centrifuged on a density gradient for the preparation of subcellular fractions. Stimulation increased the incorporation of 32P into phosphatidate, phosphatidylinositol and phosphatidylcholine. The increased phosphatidate labelling, but not that of the other two lipids, was seen in fractions rich in synaptic vesicles. Stimulation had no effect on ATP labelling. The phosphatidate content of most fractions fell slightly after stimulation, but amounts of other phospholipids were not affected.  相似文献   

8.
A rapid method for the preparation of highly purified cholinergic nerve endings from the electric organ of Torpedo is described. The endings retain their cytoplasmic components, as shown by biochemical and morphological observations. The homogeneity of these synaptosomes make them a useful tool for further studies.  相似文献   

9.
10.
Choline acetyltransferase (EC 2.3.1.6) catalyzes the synthesis of the neurotransmitter acetylcholine from acetylcoenzyme A and choline. It has been purified from the electric organ of Torpedo marmorata by a new double-affinity chromatography. Our rapid and specific purification procedure includes affinity chromatography on CoA-Sepharose and then a second affinity chromatography on the enzyme's inhibitor [2-[3-(2-ammonioethoxy)-benzoyl]ethyl]trimethylammonium bromide coupled to Sepharose via a six-carbon spacer arm. The final enzyme preparation has been purified 7300-fold to a specific activity of 73 mumol acetylcholine formed min-1 mg protein-1. The isolated enzyme gave a single band on disc polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The relative molecular mass was determined to be 68,300 +/- 2100.  相似文献   

11.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the alpha- and beta-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis alpha-toxin-Sepharose columns. The data suggest that the alpha-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

12.
The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synaptosomes of Torpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5'-adenylyl imidodiphosphate as substrate and 5'-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of lead pyrophosphate precipitate.  相似文献   

13.
14.
Vesiculated fragments of presynaptic plasma membranes have been isolated from the purely cholinergic electromotor nerve terminals of Torpedo marmorata. Synaptosomes, generated from the terminals by homogenization, were separated on a discontinuous Ficoll gradient and then lysed by osmotic shock at 2 degrees C, pH 8.5 in the presence of 0.1 mM MgCl2. These conditions for lysis were optimal for choline transport. Electron micrographs of lysed synaptosomes showed vesiculated membranes with diameters smaller than those of synaptosomes; occasionally, synaptic vesicles were observed attached to them. Intact mitochondria or synaptosomes and basal laminae were not present. High-affinity (KT = 1.7 microM) uptake of choline into these vesiculated membrane fragments showed: an absolute dependence on the Na+ gradient (outside greater than inside), a transient Na+-gradient-dependent accumulation of choline over the equilibrium concentration (over-shoot), electrogenicity and rheogenicity, since the uptake was further stimulated in the presence of a Na+ gradient by valinomycin, dependence on the presence of external Cl-, and partial dependence on a Cl- gradient (outside greater than inside), high-affinity (Ki = 25 nM) inhibition by hemicholinium-3 and temperature sensitivity. The plasma membranes were further purified by centrifugal density gradient fractionation on a 4-12% Ficoll gradient. Several enzymes and polypeptides copurified with the specific binding sites for choline present in the membranes. The fraction with the most binding sites was one denser than 12% Ficoll. This was also the fraction richest in acetylcholinesterase, 5'-nucleotidase and polypeptides of relative molecular mass, Mr (X 10(-3)) of greater than 200, 140, 68 (doublet), 57, 54 and 28. Acetylcholinesterase was positively identified as a Mr 68 000 component by immune blot. By contrast the ouabain-sensitive ATPase showed a negative correlation with choline binding sites. When the solubilized proteins of the vesiculated membranes were transferred to liposomes, they conferred on the latter the capacity to take up choline in a manner closely resembling its transport in natural membranes but with an initial (one minute) rate of uptake approximately 10-times greater per mg of protein. Several proteins were selectively transferred to the liposomes including ones of Mr (X 10(-3)) 34, 42, 47, 54, 60, 68, 92, 160 and greater than 200. The polypeptides of Mr (X 10(-3)) 140, 57 and 28 were lost in the transfer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
[3H]Diisopropylfluorophosphate was used to label covalently the catalytic subunits of the acetylcholinesterase forms extracted using different solubilization media. The incorporation of radiolabel was specific for true acetylcholinesterase, and SDS-polyacrylamide gel electrophoresis revealed that differences in molecular size existed between low salt-soluble (mol. wt. approximately 76 000), detergent-soluble (69 000) and high salt-soluble (72 000) acetylcholinesterase. These differences could not be attributed solely to an unusual migration behaviour but appeared to reflect differences in primary structure. While the basic unit of the low salt-soluble esterase was a monomer, the detergent-soluble esterase was linked by disulphide bridges to form dimers. The high salt-soluble form existed in large aggregates, whereby disulphide bridges form covalent links between the catalytic and non-catalytic elements. Pronase treatment showed that the differences were confined to the 'outer' structure of these molecules. The active site peptide exhibited homologies indicating that this part is conserved in the different classes of acetylcholinesterase. The results suggest that one can discriminate between at least three distinct esterase classes in the electric organ of Torpedo marmorata.  相似文献   

16.
The selectivity of lipid-protein interaction for spin-labeled phospholipids and gangliosides in nicotinic acetylcholine receptor-rich membranes from Torpedo marmorata has been studied by ESR spectroscopy. The association constants of the spin-labeled lipids (relative to phosphatidylcholine) at pH 8.0 are in the order cardiolipin (5.1) approximately equal to stearic acid (4.9) approximately equal to phosphatidylinositol (4.7) > phosphatidylserine (2.7) > phosphatidylglycerol (1.7) > G(D1b) approximately equal to G(M1) approximately equal to G(M2) approximately equal to G(M3) approximately equal to phosphatidylcholine (1.0) > phosphatidylethanolamine (0.5). No selectivity for mono- or disialogangliosides is found over that for phosphatidylcholine. Aminated local anesthetics were found to compete with spin-labeled phosphatidylinositol, but to a much lesser extent with spin-labeled stearic acid, for sites on the intramembranous surface of the protein. The relative association constant of phosphatidylinositol was reduced in the presence of the different local anesthetics to the following extents: tetracaine (55%) > procaine (35%) approximately benzocaine (30%). For stearic acid, only tetracaine gave an appreciable reduction (30%) in association constant. These displacements represent an intrinsic difference in affinity of the local anesthetics for the lipid-protein interface because the membrane partition coefficients are in the order benzocaine > tetracaine approximately procaine.  相似文献   

17.
After fixation with glutaraldehyde and impregnation with tannic acid, the membrane that underlies the nerve terminals in Torpedo marmorata electroplaque presents a typical asymmetric triple-layered structure with an unusual thickness; in addition, it is coated with electron- dense material on its inner, cytoplasmic face. Filamentous structures are frequently found attached to these "subsynaptic densities." The organization of the subsynaptic membrane is partly preserved after homogenization of the electric organ and purification of acetylcholine- receptor (AchR)-rich membrane fragments. In vitro treatment at pH 11 and 4 degrees C of these AchR-rich membranes releases an extrinsic protein of 43,000 mol wt and at the same time causes the complete disappearance of the cytoplasmic condensations. Freeze-etching of native membrane fragments discloses remnants of the ribbonlike organization of the AchR rosettes. This organization disappears ater alkaline treatment and is replaced by a network which is not observed after rapid freezing and, therefore, most likely results from the lateral redistribution of the AchR rosettes during condition of slow freezing. A dispersion of the AchR rosettes in the plane of the membrane also occurs after fusion of the pH 11-treated fragments with phospholipid vesicles. These results are interpreted in terms of a structural stabilization and immobilization of the AchR by the 43,000- Mr protein binding to the inner face of the subsynaptic membrane.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号