首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a novel cell-based method for the isolation and selection of mutant cytokine receptors with defects in ligand binding and applied it to the human interleukin-4 receptor. The experimental procedure is based upon the functional heterologous expression of receptor mutants in eukaryotic cells followed by a two-step selection procedure. Positive selection for cells that express receptor variants is achieved by means of an agonistic antibody that mediates cell survival through receptor dimerization. An IL-4-coupled toxin is subsequently used to select against cells expressing wild-type receptors. Cells expressing mutant receptors that are unable to bind the cytotoxic ligand survive and can be amplified. The procedure allows the isolation of rare receptor variants from cell pools containing predominantly wild-type cells. This method, which should be equally applicable to similar receptor systems, was used to demonstrate the importance of a critical charged amino acid residue in the human IL-4 receptor alpha-subunit for IL-4-induced receptor activation.  相似文献   

2.
Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A(1) chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A(1) chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 μM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A(1) chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A(1) variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A(1) chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A(1) chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A(1) chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs.  相似文献   

3.
Glycosylphosphatidylinositol (GPI) anchors various proteins to the membrane of eukaryotic cells. Paroxysmal nocturnal hemoglobinuria (PNH) is a hematopoietic stem cell disorder that is primarily due to the lack of GPI-anchored proteins on the surface of blood cells. To detect the GPI-deficient cells in PNH patients, we modified alpha toxin, a pore-forming toxin of the Gram-positive bacterium Clostridium septicum. We first showed that aerolysin, a homologous toxin from Aeromonas hydrophila, bound to both of Chinese hamster ovary cells deficient of N-glycan maturation as well as GPI biosynthesis at a significant level. However, alpha toxin bound to the mutant cells of N-glycosylation, but not to GPI-deficient cells. It suggested that alpha toxin could be used as a specific probe to differentiate only GPI-deficient cells. As a diagnostic probe, alpha toxin must be the least cytotoxic while maintaining its affinity for GPI. Thus, we constructed several mutants. Of these, the mutants carrying the Y155G or S189C/S238C substitutions bound to GPI as well as the wild-type toxin. These mutants also efficiently underwent proteolytic activation and aggregated into oligomers on the cell surface, which are events that precede the formation of a pore in the host cell membrane, leading to cell death. Nevertheless, these mutants almost completely failed to kill host cells. It was revealed that the substitutions affect the events that follow oligomerization. The S189C/S238C mutant toxin differentiated GPI-deficient granulocyte and PMN, but not red blood cells, of a PNH patient from GPI-positive cells at least as sensitively as the commercial monoclonal antibodies that recognize the CD59 or CD55 GPI proteins on blood cells. Thus, this modified bacterial toxin can be employed instead of costly monoclonal antibodies to diagnose PNH patients.  相似文献   

4.
To isolate mutant liver cells defective in the endocytic pathway, a selection strategy using toxic ligands for two distinct membrane receptors was utilized. Rare survivors termed trafficking mutants (Trf2-Trf7) were stable and more resistant than the parental HuH-7 cells to both toxin conjugates. They differed from the previously isolated Trf1 HuH-7 mutant as they expressed casein kinase 2 alpha' (CK2alpha') which is missing from Trf1 cells and which corrects the Trf1 trafficking phenotype. Binding of (125)I-asialoorosomucoid (ASOR) and cell surface expression of asialoglycoprotein receptor (ASGPR) were reduced approximately 20%-60% in Trf2-Trf7 cells compared to parental HuH-7, without a reduction in total cellular ASGPR. Based on (125)I-transferrin binding, cell surface transferrin receptor activity was reduced between 13% and 88% in the various mutant cell lines. Distinctive phenotypic traits were identified in the differential resistance of Trf2-Trf7 to a panel of lectins and toxins and to UV light-induced cell death. By following the endocytic uptake and trafficking of Alexa(488)-ASOR, significant differences in endosomal fusion between parental HuH-7 and the Trf mutants became apparent. Unlike parental HuH-7 cells in which the fusion of endosomes into larger vesicles was evident as early as 20 min, ASOR endocytosed into the Trf mutants remained within small vesicles for up to 60 min. Identifying the biochemical and genetic mechanisms underlying these phenotypes should uncover novel and unpredicted protein-protein or protein-lipid interactions that orchestrate specific steps in membrane protein trafficking.  相似文献   

5.
Robo receptors interact with ligands of the Slit family. The nematode C. elegans has one Robo receptor (SAX-3) and one Slit protein (SLT-1), which direct ventral axon guidance and guidance at the midline. In larvae, slt-1 expression in dorsal muscles repels axons to promote ventral guidance. SLT-1 acts through the SAX-3 receptor, in parallel with the ventral attractant UNC-6 (Netrin). Removing both UNC-6 and SLT-1 eliminates all ventral guidance information for some axons, revealing an underlying longitudinal guidance pathway. In the embryo, slt-1 is expressed at high levels in anterior epidermis. Embryonic expression of SLT-1 provides anterior-posterior guidance information to migrating CAN neurons. Surprisingly, slt-1 mutants do not exhibit the nerve ring and epithelial defects of sax-3 mutants, suggesting that SAX-3 has both Slit-dependent and Slit-independent functions in development.  相似文献   

6.
To isolate mutant liver cells defective in the endocytic pathway, a selection strategy using toxic ligands for two distinct membrane receptors was utilized. Rare survivors termed trafficking mutants (Trf2-Trf7) were stable and more resistant than the parental HuH-7 cells to both toxin conjugates. They differed from the previously isolated Trf1 HuH-7 mutant as they expressed casein kinase 2 α″ (CK2α″) which is missing from Trf1 cells and which corrects the Trf1 trafficking phenotype. Binding of 125I-asialoorosomucoid (ASOR) and cell surface expression of asialoglycoprotein receptor (ASGPR) were reduced approximately 20%-60% in Trf2-Trf7 cells compared to parental HuH-7, without a reduction in total cellular ASGPR. Based on 125I-transferrin binding, cell surface transferrin receptor activity was reduced between 13% and 88% in the various mutant cell lines. Distinctive phenotypic traits were identified in the differential resistance of Trf2-Trf7 to a panel of lectins and toxins and to UV light-induced cell death. By following the endocytic uptake and trafficking of Alexa488-ASOR, significant differences in endosomal fusion between parental HuH-7 and the Trf mutants became apparent. Unlike parental HuH-7 cells in which the fusion of endosomes into larger vesicles was evident as early as 20 min, ASOR endocytosed into the Trf mutants remained within small vesicles for up to 60 min. Identifying the biochemical and genetic mechanisms underlying these phenotypes should uncover novel and unpredicted protein-protein or protein-lipid interactions that orchestrate specific steps in membrane protein trafficking.  相似文献   

7.
Human squamous cell carcinoma cell lines often possess increased levels of epidermal growth factor (EGF) receptor. The growth of these EGF receptor-hyperproducing cells is usually inhibited by EGF. To investigate the mechanism of EGF-mediated inhibition of cell growth, variants displaying alternate responses to EGF were isolated from two squamous cell carcinoma lines, NA and Ca9-22; these cell lines possess high numbers of the EGF receptor and an amplified EGF receptor (EGFR) gene. The variants were isolated from NA cells after several cycles of EGF treatment and they have acquired EGF-dependent growth. Scatchard plot analysis revealed a decreased level of EGF receptor in these ER variants as compared with parental NA cells. Southern blot analysis and RNA dot blot analysis demonstrated that the ER variants had lost the amplified EGFR gene. One variant isolated from Ca9-22 cells, CER-1, grew without being affected by EGF. CER-1 cells had higher numbers of EGF receptor than parental Ca9-22 but similar EGFR gene copy number. Flow cytometric analysis indicated an increase in ploidy and cell volume which may give rise to the increase in receptor number per cell. The EGF receptors on both Ca9-22 and CER-1 cells were autophosphorylated upon EGF exposure in a similar manner suggesting no obvious alteration in receptor tyrosine kinase. However, very efficient down-regulation of the EGF receptor occurred in CER-1 cells. These data suggest two independent mechanisms by which EGF receptor-hyperproducing cells escape EGF-mediated growth inhibition: one mechanism is common and involves the loss of the amplified EGFR genes, and another is novel and involves the efficient down-regulation of the cell-surface receptor.  相似文献   

8.
Epidermal growth factor (EGF) was linked to the toxic A chain of ricin toxin (RTA) to produce an EGF-receptor-specific cytotoxic agent, EGF-RTA. Three EGF-RTA-resistant mutants of the human HeLa cell line were selected. These mutant cell lines are 10-fold to more than 100-fold more resistant to EGF-RTA when compared to HeLa cells. The EGF-RTA-resistant mutants have at least as many EGF receptors as parent cells; the basis for the EGF-RTA-resistant phenotype must be distal to EGF binding. The EGF-RTA-resistant cells are not cross-ressitant to ricin or to diphtheria toxin; their mutant phenotype appears to be EGF specific. The EGF-RTA-resistant mutants are able to internalize and degrade EGF. However, the mutants have altered EGF receptor down-regulation and phorbol 12-tetradecanoate 13-acetate modulation properties. EGF-RTA/ammonium chloride and EGF-RTA/adenovirus co-treatment data suggest that the mutant defect(s) which confers EGF-RTA resistance is either in the endosome or at a step(s) in the intracellular EGF processing pathway between the endosome and the lysosome.  相似文献   

9.
The recombinant fluorescent derivative of diphtheria toxin (EGFP-SbB) obtained by the replacement of toxin A subunit by enhanced green fluorescent protein (EGFP) has been used for visualization of the interaction of diphtheria toxin (DT) with sensitive and insensitive cells. It was shown that EGFP-SbB could interact with cell surface of both toxin-sensitive monkey cells (Vero cell line) and toxin-resistant mouse cells (3T3 cell line). The affinity of this protein for receptors of Vero cells was three times higher as compared with 3T3 cells. It was demonstrated that fluorescent derivate was able to interact with receptors of both cell lines and to internalize into these cells. Internalization of EGFP-SbB into the cells was inhibited by endocytosis inhibitor phenyl arsine oxide. We suppose that diverse sensitivity to DT of monkey and mouse cells can be explained not only by differences in their receptor affinity for DT but also by the processes that occur after internalization of the toxin into the cells.  相似文献   

10.
A selective amplification of the coding sequence of the rat M2 muscarinic receptor gene was achieved by the polymerase chain reaction. The error rate of this amplification system under conditions specified was 1 nucleotide substitution in 841 base pairs. In vitro expression of this gene in murine fibroblasts (B82) via the eukaryotic expression vector, pH beta APr-1-neo, resulted in high level expression of specific [3H] (-)MQNB binding in transfected B82 cell lines. One of these clones, M2LKB2-2, showed a stable expression of [3H] (-)MQNB binding with a Kd value of 265 pM and a Bmax value of 411 +/- 50 fmol/10(6) cells. Cardiac selective muscarinic antagonists such as himbacine and AF-DX 116 show high affinities for this binding site in the M2LKB2-2 cells. The rank order of potency of several antagonists in inhibiting [3H] (-)MQNB binding in these cells conformed to the characteristics of an M2 type muscarinic receptor. Carbachol showed a single affinity state for the receptors in the M2LKB2-2 cells with a Ki value of 2.0 microM. This receptor appeared to be inversely coupled to adenylate cyclase via a pertussis toxin sensitive G-protein. Carbachol also had a slight stimulatory effect on the hydrolysis of inositol lipids. The polymerase chain reaction proves highly effective in cloning genes from genomic material, as demonstrated by the first in vitro functional expression of the rat M2 type muscarinic receptor.  相似文献   

11.
It is well known, that mechanism of diphtheria toxin (DT) action triggers only if toxin penetrates into acid endosome after binding with specific receptor--heparin-binding epidermal grows factor like grows factor (HB-EGF) on the cell surface. We have suggested that DT is capable to penetrate either into B-lymphocytes, which have specific immunoglobulin receptors for DT or into phagocytes, which are able to phagocytosis of DT, because in both of these cases toxin get in endosome with conditions suitable for its activation. To check this hypothesis the comparative studies with insensitive to DT mice lacking specific receptor for DT, and with sensitive to DT guinea pigs were performed. Influence of DT on vitality of phagocytes and B-cells with different specificity from mice and guinea pigs was studied. B-cells were obtained from animals immunized by control antigen--ovalbumine and recombinant diphtheria toxoid--DT without N-terminal 28 aminoacid residues responsible for toxic effect. The results obtained have showed that DT can penetrate into phagocytes and B-cells specific to DT and kill these cells even if they lack classic receptor for DT. This fact evidences that DT is potentially able to inhibit self-directed antibody response and keep from participation of phagocytes in the protection of organism from infection.  相似文献   

12.
The ability of isoproterenol, glucagon, PGE1 and cholera toxin to stimulate the synthesis of cAMP and protein kinase activity in line of liver cells (BRL) and a line of rat hepatoma cells (H35) has been determined. The concentration of cAMP in BRL cells (approximately 10 pmoles/mg protein) is in the range reported for other cultured cell lines but H35 cells contain extraordinarily low amounts of this cyclic nucleotide (approximately 0.05 pmoles/mg protein). Isoproterenol and PGE1 caused an increase in cAMP content, and protein kinase activation in BRL cells, although glucagon was ineffective. H35 cells, in contrast, were completely insensitive to all hormonal agonists. Despite this fact, cholera toxin was able to produce a marked increase in cAMP content, adenylate cyclase activity and protein kinase activation in H35 cells. binding studies with [125 I]-iodohydroxybenzylpindolol, a specific beta-adrenergic receptor antagonist, revealed that each H35 cell possesses fewer than 10 beta-adrenergic receptors whereas BRL cells contain 2-5,000 receptors per cell. The low level of cAMP in H35 cells appears to result from a combination of totally unstimulated adenylate cyclase and apparently elevated phosphodiesterase activities.  相似文献   

13.
The toxic lectin modeccin, which inhibits protein synthesis in eukaryotic cells, is cleaved upon treatment with 2-mercaptoethanol into two peptide chains which move in polyacrylamide gels at rates corresponding to molecular weights 28,000 and 38,000. After reduction, the toxin loses its effect on cells, while its ability to inhibit cell-free protein synthesis increases. Like abrin and ricin it inhibits protein synthesis by inactivating the 60S ribosomal subunits. Modeccin binds to surface receptors containing terminal galactose residues. Competition experiments with various glycoproteins indicate that the modeccin receptors are different from the abrin receptors. In addition, they were present on HeLa cells in much smaller numbers. Moreover, mutant lines resistant to abrin and ricin were not resistant to modeccin and vice-versa. The toxin resistance of various mutant cell lines could not be accounted for by a reduced number of binding sites on cells. The data are consistent with the view that the cells possesss different populations of binding sites with differences in ability to facilitate the uptake of the toxins and that in the resistant lines the most active receptors have been reduced or eliminated.  相似文献   

14.
Anthrax toxin, a three-component protein toxin secreted by Bacillus anthracis, assembles into toxic complexes at the surface of receptor-bearing eukaryotic cells. The protective antigen (PA) protein binds to receptors, either tumor endothelial cell marker 8 (TEM8) or CMG2 (capillary morphogenesis protein 2), and orchestrates the delivery of the lethal and edema factors into the cytosol. TEM8 is reported to be overexpressed during tumor angiogenesis, whereas CMG2 is more widely expressed in normal tissues. To extend prior work on targeting of tumor with modified anthrax toxins, we used phage display to select PA variants that preferentially bind to TEM8 as compared with CMG2. Substitutions were randomly introduced into residues 605-729 of PA, within the C-terminal domain 4 of PA, which is the principal region that contacts receptor. Candidates were characterized in cellular cytotoxicity assays with Chinese hamster ovary (CHO) cells expressing either TEM8 or CMG2. A PA mutant having the substitutions R659S and M662R had enhanced specificity toward TEM8-overexpressing CHO cells. This PA variant also displayed broad and potent tumoricidal activity to various human tumor cells, especially to HeLa and A549/ATCC cells. By contrast, the substitution N657Q significantly reduced toxicity to TEM8 but not CMG2-overexpressing CHO cells. Our results indicate that certain amino acid substitutions within PA domain 4 create anthrax toxins that selectively kill human tumor cells. The PA R659S/M662R protein may be useful as a therapeutic agent for cancer treatment.  相似文献   

15.
Anthrax toxin consists of three separate proteins produced by Bacillus anthracis: protective antigen (PA), lethal factor (LF), and edema factor (EF). Previous work showed that the process by which these proteins damage eukaryotic cells begins with binding of PA (83 kDa) to cell surface receptors. PA is then cleaved by a cell surface protease so as to expose a high-affinity binding site for LF or EF on the COOH-terminal, receptor-bound, 63-kilodalton fragment. In this report we more closely define a region of PA involved in receptor binding. The gene encoding PA was mutagenized so as to delete 3, 5, 7, 12, or 14 amino acids from the carboxyl terminus of the protein, and the truncated PA variants were purified from Bacillus subtilis or Escherichia coli. Deletion of 3, 5, or 7 amino acids reduced the binding of PA to cells and the subsequent toxicity of the PA.LF complex to J774A.1 cells and also the ability to cause EF binding to cells. Deletion of 12 or 14 amino acids completely eliminated all these activities. These results show that the carboxy terminus comprises or is part of the receptor-binding domain of PA.  相似文献   

16.
17.
Populations of Chinese hamster ovary cells selected for resistance to diphtheria toxin were found to be highly enriched for mutants deficient in the uptake of lysosomal hydrolases via the mannose 6-phosphate receptor. One doubly defective mutant, DTF 1-5-1, exhibited increased resistance to Sindbis virus, although it was able to bind and internalize virus normally. Normal production of virus was obtained when, subsequent to virus binding, the mutant was exposed for 2 min to acidic pH. Similarly, a shift to acidic pH increased the sensitivity of DTF 1-5-1 to diphtheria toxin 12-fold. Decreased uptake of lysosomal hydrolases by the mutant correlated with decreased mannose 6-phosphate receptor activity at the cell surface; results of lactoperoxidase- catalyzed iodination indicated that the surface-associated receptor was present but inactive on DTF 1-5-1. Total mannose 6-phosphate receptor activity was also decreased in the mutant and this decrease was reflected by increased secretion of lysosomal hydrolases. The phenotype of DTF 1-5-1 resembles in many ways that of cells treated with ammonia. We suggest that the defect in DTF 1-5-1 stems from an inability to deliver virus, diphtheria toxin, and lysosomal hydrolases to an acidic compartment. Other ligands may be endocytosed through a different pathway since the defect of DTF 1-5-1 did not decrease the endocytosis of ricin, modeccin, or Pseudomonas toxin and had minimal effects on uptake and degradation of low density lipoprotein.  相似文献   

18.

Background

Virus infected killer strains of the baker’s yeast Saccharomyces cerevisiae secrete protein toxins such as K28, K1, K2 and Klus which are lethal to sensitive yeast strains of the same or related species. K28 is somewhat unique as it represents an α/β heterodimeric protein of the A/B toxin family which, after having bound to the surface of sensitive target cells, is taken up by receptor-mediated endocytosis and transported through the secretory pathway in a retrograde manner. While the current knowledge on yeast killer toxins is largely based on genetic screens for yeast mutants with altered toxin sensitivity, in vivo imaging of cell surface binding and intracellular toxin transport is still largely hampered by a lack of fluorescently labelled and biologically active killer toxin variants.

Results

In this study, we succeeded for the first time in the heterologous K28 preprotoxin expression and production of fluorescent K28 variants in Pichia pastoris. Recombinant P. pastoris GS115 cells were shown to successfully process and secrete K28 variants fused to mCherry or mTFP by high cell density fermentation. The fluorescent K28 derivatives were obtained in high yield and possessed in vivo toxicity and specificity against sensitive yeast cells. In cell binding studies the resulting K28 variants caused strong fluorescence signals at the cell periphery due to toxin binding to primary K28 receptors within the yeast cell wall. Thereby, the β-subunit of K28 was confirmed to be the sole component required and sufficient for K28 cell wall binding.

Conclusion

Successful production of fluorescent killer toxin variants of S. cerevisiae by high cell density fermentation of recombinant, K28 expressing strains of P. pastoris now opens the possibility to study and monitor killer toxin cell surface binding, in particular in toxin resistant yeast mutants in which toxin resistance is caused by defects in toxin binding due to alterations in cell wall structure and composition. This novel approach might be easily transferable to other killer toxins from different yeast species and genera. Furthermore, the fluorescent toxin variants described here might likewise represent a powerful tool in future studies to visualize intracellular A/B toxin trafficking with the help of high resolution single molecule imaging techniques.
  相似文献   

19.
Homo- and heterodimerization of the opioid receptors with functional consequences were reported previously. However, the exact nature of these putative dimers has not been identified. In current studies, the nature of the heterodimers was investigated by producing the phenotypes of the 1:1 heterodimers formed between the constitutively expressed mu-opioid receptor (MOR) and the ponasterone A-induced expression of delta-opioid receptor (DOR) in EcR293 cells. By examining the trafficking of the cell surface-located MOR and DOR, we determined that these two receptors endocytosed independently. Using cell surface expression-deficient mutants of MOR and DOR, we observed that the corresponding wild types of these receptors could not rescue the cell surface expression of the mutants, whereas the antagonist naloxone could. Furthermore, studies with constitutive or agonist-induced receptor internalization also indicated that MOR and DOR endocytosed independently and could not "drag in" the corresponding wild types or endocytosis-deficient mutants. Additionally, the heterodimer phenotypes could be eliminated by the pretreatment of the EcR293 cells with pertussis toxin and could be modulated by the deletion of the RRITR sequence in the third intracellular loop that is involved in the receptor-G protein interaction and activation. These data suggest that MOR and DOR heterodimerize only at the cell surface and that the oligomers of opioid receptors and heterotrimeric G protein are the bases for the observed MOR-DOR heterodimer phenotypes.  相似文献   

20.
Pleiotropic human KB cell mutants, selected for resistance to a conjugate of epidermal growth factor with Pseudomonas exotoxin (PE-EGF), were characterized genetically. These mutants have a pleiotropic phenotype, which includes reduced number of EGF receptors and reduced growth rate. Hybrid cells between HeLa D98 and four out of five of these resistant cell lines were more resistant to PE-EGF than hybrids formed between HeLa D98 and parental KB cells. This result indicates that the phenotype of PE-EGF resistance is incompletely dominant in four out of five cases and recessive in one out of five variants. In three separate experiments, transfection of DNA from two of the dominant resistant cell lines resulted in transformation of wild-type KB cells to PE-EGF resistance, confirming the dominant nature of these mutations, which affect levels of EGF receptor in KB cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号