首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumor suppressor genes represent a broad class of genes that normally function in the negative regulation of cell proliferation. Loss-of-function mutations in these genes lead to unrestrained cell proliferation and tumor formation. A fundamental understanding of how tumor suppressor genes regulate cell proliferation and differentiation should reveal important aspects of signalling pathways and cell cycle control. A recent report describing the Drosophila tumor suppressor gene warts has implications in the study of the human myotonic dystrophy gene(1). These genes encode members of a cyclic AMP-dependent protein kinase subfamily that includes other plant and animal orthologues.  相似文献   

3.
4.
5.

Background  

The filamentous fungus Ashbya gossypii grows into a multicellular mycelium that is distinct from the unicellular morphology of its closely related yeast species. It has been proposed that genes important for cell cycle regulation play central roles for such phenotypic differences. Because A. gossypii shares an almost identical set of cell cycle genes with the typical yeast Saccharomyces cerevisiae, the differences might occur at the level of orthologous gene regulation. Codon usage patterns were compared to identify orthologous genes with different gene regulation between A. gossypii and nine closely related yeast species.  相似文献   

6.
7.
8.
MicroRNAs, non-coding 20–22 nucleotide single-stranded RNAs, result in translational repression or degradation and gene silencing of their target genes, and significantly contribute to the regulation of gene expression. In the current study, we report that miR-182 expression was significantly upregulated in prostate cancer tissues and four cell lines, compared to benign prostatic hyperplasia tissues and normal prostatic epithelial (RWPE-1) cells. Ectopic overexpression of miR-182 significantly promotes the proliferation, increases the invasion, promotes the G1/S cell cycle transition and reduces early apotosis of PC-3 cells, while suppression of miR-182 decreased the proliferation and invasion, inhibits the G1/S cell cycle transition and increase early apotosis of PC-3 cells. Additionally, we demonstrated that miR-182 could downregulate expression of NDRG1 by directly targeting the NDRG1 3′-untranslated region. In conclusion, our results suggest that miR-182 plays an important role in the proliferation of human prostate cancer cells by directly suppressing the tumor supressor gene NDRG1. We uncovered a new epigenetic regulation of NDRG1.  相似文献   

9.
Urinary bladder cancer is the fourth most common malignancy in the Western world. Transitional cell carcinoma (TCC) is the most common subtype, accounting for about 90% of all bladder cancers. The TP53 gene plays an essential role in the regulation of the cell cycle and apoptosis and therefore contributes to cellular transformation and malignancy; however, little is known about the differential gene expression patterns in human tumors that present with the wild-type or mutated TP53 gene. Therefore, because gene profiling can provide new insights into the molecular biology of bladder cancer, the present study aimed to compare the molecular profiles of bladder cancer cell lines with different TP53 alleles, including the wild type (RT4) and two mutants (5637, with mutations in codons 280 and 72; and T24, a TP53 allele encoding an in-frame deletion of tyrosine 126). Unsupervised hierarchical clustering and gene networks were constructed based on data generated by cDNA microarrays using mRNA from the three cell lines. Differentially expressed genes related to the cell cycle, cell division, cell death, and cell proliferation were observed in the three cell lines. However, the cDNA microarray data did not cluster cell lines based on their TP53 allele. The gene profiles of the RT4 cells were more similar to those of T24 than to those of the 5637 cells. While the deregulation of both the cell cycle and the apoptotic pathways was particularly related to TCC, these alterations were not associated with the TP53 status.  相似文献   

10.
11.
以表达人重组尿激酶原中国仓鼠卵巢 (CHO) 工程细胞系11G-S为研究对象,运用基因芯片技术比较了CHO工程细胞在批次及流加培养不同生长阶段基因表达水平的差异,在此基础上采用Genmapp软件,同时结合已知的细胞周期信号通路图,着重分析了批次及流加培养CHO工程细胞的细胞周期调控基因转录谱差异。在基因芯片涉及的19 191个目标基因中,批次和流加培养不同生长阶段CHO工程细胞的下调表达的基因数量多于上调表达基因数目;两种培养模式下的基因差异表达有着明显的不同,尤其是在细胞生长的衰退期,流加培养CHO工程细胞中下调表达的基因数量明显多于批次培养。有关调控细胞周期关键基因的转录谱分析表明,CHO工程细胞主要是通过下调表达CDKs、Cyclin及CKI家族中的Cdk6、Cdk2、Cdc2a、Ccne1、Ccne2基因及上调表达Smad4基因,来达到调控细胞增殖及维持自身活力的目的。  相似文献   

12.
The Drosophila retina has a precise repeating structure based on the unit eye, or ommatidium. This review summarizes studies of the cell proliferation and survival episodes that affect the number of cells available to make each ommatidium. Late in larval development, as differentiation and patterning begin, the retinal epithelium exhibits striking regulation of the cell cycle including a transient G1 arrest of all cells, followed by a ‘Second Mitotic Wave’ cell cycle that is regulated at the G2/M transition by local intercellular signals. Reiterated episodes of cell death also contribute to precise regulation of retinal cell number. The EGF receptor homolog has multiple roles in retinal proliferation and survival.  相似文献   

13.
14.
During organogenesis, tissues expand in size and eventually acquire consistent ratios of cells with dazzling diversity in morphology and function. During this process progenitor cells exit the cell cycle and execute differentiation programs through extensive genetic reprogramming that involves the silencing of proliferation genes and the activation of differentiation genes in a step-wise temporal manner. Recent years have witnessed expansion in our understanding of the epigenetic mechanisms that contribute to cellular differentiation and maturation during organ development, as this is a crucial step toward advancing regenerative therapy research for many intractable disorders. Among such epigenetic programs, the developmental roles of the polycomb repressive complex 2 (PRC2), a chromatin remodeling complex that mediates silencing of gene expression, have been under intensive examination. This review summarizes recent findings of how PRC2 functions to regulate the transition from proliferation to differentiation during organogenesis and discusses some aspects of the remaining questions associated with its regulation and mechanisms of action.  相似文献   

15.
16.
Primary cell cultures from crustacea have been initiated since the 1960s, yet no permanent cell line is available. Primary cells have a limited proliferative capacity in culture due to cellular senescence, which is regulated by a group of dominant senescence genes. The aim of this research was to manipulate cell cycle regulation by transfecting Cherax quadricarinatus primary cells with oncogenes, in an effort to induce a permanent cell line. Human papillomaviruses (HPV) play a critical role in the formation of anogenital cancer. Research has demonstrated that the HPV-expressed E6 and E7 proteins function concomitantly to disrupt the p53 and retinoblastoma (Rb) tumor suppressor genes, regulators of the cell-cycle checkpoints at the first gap (G1) phase. HPV E6 and E7 genes were transfected into the C. quadricarinatus cells by lipofection. Successful transfection was demonstrated by the presence of oncogene messenger RNA by reverse transciptase polymerase chain reaction. At day 150, transfected cells still remain viable, although cell proliferation was stagnant. It may be that while transfection of the oncogenes was successful, no proliferation of the C. quadricarinatus cells was evident due to a lack of telomere maintenance.  相似文献   

17.
The product of the c-myc gene (c-Myc) is a sequence-specific DNA-binding protein that has previously been demonstrated to be required for cell cycle progression. Here we report that the c-Myc DNA binding site confers cell cycle regulation to a reporter gene in Chinese hamster ovary cells. The observed transactivation was biphasic with a small increase in G1 and a marked increase during the S-to-G2/M transition of the cell cycle. This cell cycle regulation of transactivation potential is accounted for, in part, by regulatory phosphorylation of the c-Myc transactivation domain. Together, these data demonstrate that c-Myc may have an important role in the progression of cells through both the G1 and G2 phases of the cell cycle.  相似文献   

18.
19.

Background

In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks.

Methodology/Principal Findings

Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell) fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa.

Conclusions/Significance

While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the evolution of multicellularity.  相似文献   

20.
MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle–associated genes cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 (IGF1) and downregulated the expression of key proteins in the PI3K/AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号