首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the construction of a video-rate two-photon laser scanning microscope, compare its performance to a similar confocal microscope, and illustrate its use for imaging local Ca(2+) transients from cortical neurons in brain slices. Key features include the use of a Ti-sapphire femtosecond laser allowing continuous tuning over a wide (700-1000 nm) wavelength range, a resonant scanning mirror to permit frame acquisition at 30 Hz, and efficient wide-field fluorescence detection. Two-photon imaging provides compelling advantages over confocal microscopy in terms of improved imaging depth and reduced phototoxicity and photobleaching, but the high cost of commercial instruments has limited their widespread adoption. By constructing one's own system the expense is greatly reduced without sacrifice of performance, and the microscope can be more readily tailored to specific applications.  相似文献   

2.
双色双光子激光扫描显微技术可以用来研究生物组织内两种不同蛋白质的表达、定位和示踪.由于大多数双光子显微镜一次只能提供一种波长的激发光,双色同时成像较难实现.mAmetrine和mKate2作为新发现的荧光蛋白对可以用于双光子双色同时成像,这得益于它们各自的优势:mAmetrine的斯托克斯位移和mKate2的高亮度.在765nm的波长激发时,它们的双光子吸收效率都很高.mAmetrine和mKate2能够很好地用于双色双光子活细胞成像实验.  相似文献   

3.
双光子激发荧光各向异性度的成像   总被引:2,自引:0,他引:2  
荧光各向异性度 (fluorescence anisotropy) 测量可以获得荧光分子的转动速度信息,进而了解分子质量、结构、以及与周边环境的相互作用情况 . 围绕一台双光子激发扫描荧光成像系统,通过改变外光路和图像记录与处理程序,从而实现了双光子激发荧光各向异性度成像,并针对一些典型样品和体系,展示了该方法的应用 . 实验中观察了 FITC 荧光分子、 FITC 结合的 CD44 抗体分子及与肿瘤细胞表面受体结合的 FITC-CD44 抗体分子 . 测量结果表明,不同分子质量、不同微观环境状态下的荧光分子,其各向异性度大小不同,在各向异性度图中能够被明显区分 . 荧光各向异性度成像能够定量测量样品微区的各向异性度值,并以二维图像的形式直观表达,是各向异性度测量与成像技术的良好结合 .  相似文献   

4.
Picosecond multiphoton scanning near-field optical microscopy.   总被引:2,自引:0,他引:2       下载免费PDF全文
We have implemented simultaneous picosecond pulsed two- and three-photon excitation of near-UV and visible absorbing fluorophores in a scanning near-field optical microscope (SNOM). The 1064-nm emission from a pulsed Nd:YVO4 laser was used to excite the visible mitochondrial specific dye MitoTracker Orange CM-H2TMRos or a Cy3-labeled antibody by two-photon excitation, and the UV absorbing DNA dyes DAPI and the bisbenzimidazole BBI-342 by three-photon excitation, in a shared aperture SNOM using uncoated fiber tips. Both organelles in human breast adenocarcinoma cells (MCF 7) and specific protein bands on polytene chromosomes of Drosophila melanogaster doubly labeled with a UV and visible dye were readily imaged without photodamage to the specimens. The fluorescence intensities showed the expected nonlinear dependence on the excitation power over the range of 5-40 mW. An analysis of the dependence of fluorescence intensity on the tip-sample displacement normal to the sample surface revealed a higher-order function for the two-photon excitation compared to the one-photon mode. In addition, the sample photobleaching patterns corresponding to one- and two-photon modes revealed a greater lateral confinement of the excitation in the two-photon case. Thus, as in optical microscopy, two-photon excitation in SNOM is confined to a smaller volume.  相似文献   

5.
Continuous wave two-photon scanning near-field optical microscopy.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have implemented continuous-wave two-photon excitation of near-UV absorbing fluorophores in a scanning near-field optical microscope (SNOM). The 647-nm emission of an Ar-Kr mixed gas laser was used to excite the UV-absorbing DNA dyes DAPI, the bisbenzimidazole Hoechst 33342, and ethidium bromide in a shared aperture SNOM with uncoated fiber tips. Polytene chromosomes of Drosophila melanogaster and the nuclei of 3T3 Balb/c cells labeled with these dyes were readily imaged. The fluorescence intensity showed the expected nonlinear (second order) dependence on the excitation power in the range of 8-180 mW. We measured the fluorescence intensity as a function of the tip-sample displacement in the direction normal to the sample surface in the single- and two-photon excitation modes (SPE, TPE). The fluorescence intensity decayed faster in TPE than in SPE.  相似文献   

6.
C Y Dong  P T So  T French    E Gratton 《Biophysical journal》1995,69(6):2234-2242
We report the development of a scanning lifetime fluorescence microscope using the asynchronous, pump-probe (stimulated emission) approach. There are two significant advantages of this technique. First, the cross-correlation signal produced by overlapping the pump and probe lasers results in i) an axial sectioning effect similar to that in confocal and two-photon excitation microscopy, and ii) improved spatial resolution compared to conventional one-photon fluorescence microscopy. Second, the low-frequency, cross-correlation signal generated allows lifetime-resolved imaging without using fast photodetectors. The data presented here include 1) determination of laser sources' threshold powers for linearity in the pump-probe signal; 2) characterization of the pump-probe intensity profile using 0.28 microns fluorescent latex spheres; 3) high frequency (up to 6.7 GHz) lifetime measurement of rhodamine B in water; and 4) lifetime-resolved images of fluorescent latex spheres, human erythrocytes and a mouse fibroblast cell stained by rhodamine DHPE, and a mouse fibroblast labeled with ethidium bromide and rhodamine DHPE.  相似文献   

7.
A number of histochemical chromogenic substrates for alkaline phosphatase are commercially available and give reaction products with a range of colours for brightfield examination. Some of these reaction products are also fluorescent, exhibiting a wide excitation range and a broad emission peak. We report here that one of these substrates, Vector Blue III, yields a stable, strongly fluorescent reaction product with an excitation peak around 500 nm and a large Stokes shift to an emission peak at 680 nm. The reaction product can be excited using a mercury lamp with a fluorescein excitation filter or an argon ion laser at 488 nm or 568 nm, and the emission detected using a long-pass filter designed for Cy-5. Thus, a single substrate is suitable for brightfield imaging of tissue sections and high-resolution analysis of subcellular detail, using a confocal laser scanning microscope, in the same specimen.  相似文献   

8.
Mizuno H  Sawano A  Eli P  Hama H  Miyawaki A 《Biochemistry》2001,40(8):2502-2510
The biochemical and biophysical properties of a red fluorescent protein from a Discosoma species (DsRed) were investigated. The recombinant DsRed expressed in E. coli showed a complex absorption spectrum that peaked at 277, 335, 487, 530, and 558 nm. Excitation at each of the absorption peaks produced a main emission peak at 583 nm, whereas a subsidiary emission peak at 500 nm appeared with excitation only at 277 or 487 nm. Incubation of E. coli or the protein at 37 degrees C facilitated the maturation of DsRed, resulting in the loss of the 500-nm peak and the enhancement of the 583-nm peak. In contrast, the 500-nm peak predominated in a mutant DsRed containing two amino acid substitutions (Y120H/K168R). Light-scattering analysis revealed that DsRed proteins expressed in E. coli and HeLa cells form a stable tetramer complex. DsRed in HeLa cells grown at 37 degrees C emitted predominantly at 583 nm. The red fluorescence was imaged using a two-photon laser (Nd:YLF, 1047 nm) as well as a one-photon laser (He:Ne, 543.5 nm). When fused to calmodulin, the red fluorescence produced an aggregation pattern only in the cytosol, which does not reflect the distribution of calmodulin. Despite the above spectral and structural complexity, fluorescence resonance energy transfer (FRET) between Aequorea green fluorescent protein (GFP) variants and DsRed was achieved. Dynamic changes in cytosolic free Ca2+ concentrations were observed with red cameleons containing yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), or Sapphire as the donor and RFP as the acceptor, using conventional microscopy and one- or two-photon excitation laser scanning microscopy. Particularly, the use of the Sapphire-DsRed pair rendered the red cameleon tolerant of acidosis occurring in hippocampal neurons, because both Sapphire and DsRed are extremely pH-resistant.  相似文献   

9.
Light-sheet microscopy has been developed as a powerful tool for live imaging in biological studies. The efficient illumination of specimens using light-sheet microscopy makes it highly amenable to high-speed imaging. We therefore applied this technology to the observation of amoeboid movements, which are too rapid to capture with conventional microscopy. To simplify the setup of the optical system, we utilized the illumination optics from a conventional confocal laser scanning microscope. Using this set-up we achieved high-speed imaging of amoeboid movements. Three-dimensional images were captured at the recording rate of 40 frames/s and clearly outlined the fine structures of fluorescent-labeled amoeboid cellular membranes. The quality of images obtained by our system was sufficient for subsequent quantitative analysis for dynamics of amoeboid movements. This study demonstrates the application of light-sheet microscopy for high-speed imaging of biological specimens.  相似文献   

10.
A major limitation for the use of two-proton laser scanning microscopy (2P-LSM) in biofilm and other studies is the lack of a thorough understanding of the excitation-emission responses of potential fluorochromes. In order to use 2P-LSM, the utility of various fluorochromes and probes specific for a range of biofilm constituents must be evaluated. The fluorochromes tested in this study included classical nucleic acid-specific stains, such as acridine orange (AO) and 4",6"-diamidino-2-phenylindole (DAPI), as well as recently developed stains. In addition, stains specific for biofilm extracellular polymeric substances (EPS matrix components) were tested. Two-photon excitation with a Ti/Sapphire laser was carried out at wavelengths from 760 to 900 nm in 10-nm steps. It was found that autofluorescence of phototrophic organisms (cyanobacteria and green algae) resulted in strong signals for the entire excitation range. In addition, the coenzyme F(420)-related autofluorescence of methanogenic bacteria could be used to obtain images of dense aggregates (excitation wavelength, 780 nm). The intensities of the emission signals for the nucleic acid-specific fluorochromes varied. For example, the intensities were similar for excitation wavelengths ranging from 780 to 900 nm for AO but were higher for a narrower range, 780 to 810 nm, for DAPI. In selective excitation, fading, multiple staining, and combined single-photon-two-photon studies, the recently developed nucleic acid-specific fluorochromes proved to be more suitable regardless of whether they are intended for living or fixed samples. Probes specific for proteins and glycoconjugates allowed two-photon imaging of polymeric biofilm constituents. Selective excitation-emission was observed for Calcofluor White M2R (780 to 800 nm) and SyproOrange (880 to 900 nm). In addition, fluor-conjugated concanavalin A lectins were examined and provided acceptable two-photon emission signals at wavelengths ranging from 780 to 800 nm. Finally, CellTracker, a fluorochrome suitable for long-term labeling of microbial eucaryote cells, was found to give strong emission at wavelengths ranging from 770 to 810 nm. If fluorochromes have the same two-photon excitation cross section, they are suitable for multiple staining and multichannel recording. Generally, if an appropriate excitation wavelength and fluorochrome were used, it was possible to obtain more highly resolved images for thick biofilm samples with two-photon laser microscopy than with conventional single-photon laser microscopy. Due to its potential for higher resolution in light-scattering tissue-like material, such as biofilms, and extremely localized excitation, 2P-LSM is a valuable addition to conventional confocal laser scanning microscopy with single-photon excitation. However, further development of the method and basic research are necessary to take full advantage of nonlinear excitation in studies of interfacial microbial ecology.  相似文献   

11.
本文采用激光共聚焦显微镜鉴别可疑笔迹和印章及其它的文件。法医在鉴别可疑文件时通常都是凭经验和用普通光学显微镜,找出其中的一些物理特征。但还是有许多文件的笔迹顺序无法确定,尤其是墨水写的笔迹,为解决法医的这一问题,我们用激光共聚焦显微镜鉴别了72例不同铅笔和圆珠笔写的肉眼难于鉴别的交叉笔顺和其他的一些文字文件。在激光共激光共聚焦显微镜下大多数笔迹和印章都能发出荧光,因此很容易鉴别其笔顺和印章的特征,必要时还可以进行笔顺的三维图象构建,以帮助鉴别。结论:激光共聚焦显微镜可以更准确地鉴别可疑笔迹和印章。印章和笔迹的交叉也很容易分辨出来。  相似文献   

12.
BACKGROUND: Spectrally distinct fluorescent proteins (FPs) have been developed permitting the visualization of several proteins simultaneously in living cells. The emission spectra of FPs, in most cases, overlap, making signal separation based on filter technology inefficient and in cases of bleed-through, inaccurate. Spectral imaging can overcome these obstacles through a process called linear unmixing. Given a complex spectra composed of multiple fluorophores, linear unmixing can reduce the complex signal to its individual, weighted, component spectra. Spectral imaging with two-photon excitation allows the collection of nontruncated emission spectra. The accuracy of linear unmixing under these conditions needs to be evaluated. METHODS: Capillaries containing defined mixtures of CFP and YFP were used to test the accuracy of linear unmixing using spectral images obtained with two-photon excitation. RESULTS: Linear unmixing can be accurate when wavelength and power-matched reference spectra are provided to the algorithm. Linear unmixing errors can occur due to (1) excitation laser contamination of emission signals, (2) the presence of FRET, (3) poor selection of excitation wavelength, and (4) failure to background subtract reference spectra. CONCLUSIONS: Linear unmixing, when judiciously performed, can accurately measure the abundance of CFP and YFP in mixed samples, even when their relative intensities range from 90:1.  相似文献   

13.
OBJECTIVE: To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. STUDY DESIGN: Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. RESULTS: Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. CONCLUSION: Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.  相似文献   

14.
Chronic inflammation in various organs, such as the brain, implies that different subpopulations of immune cells interact with the cells of the target organ. To monitor this cellular communication both morphologically and functionally, the ability to visualize more than two colors in deep tissue is indispensable. Here, we demonstrate the pronounced power of optical parametric oscillator (OPO)-based two-photon laser scanning microscopy for dynamic intravital imaging in hardly accessible organs of the central nervous and of the immune system, with particular relevance for long-term investigations of pathological mechanisms (e.g., chronic neuroinflammation) necessitating the use of fluorescent proteins. Expanding the wavelength excitation farther to the infrared overcomes the current limitations of standard Titanium:Sapphire laser excitation, leading to 1), simultaneous imaging of fluorophores with largely different excitation and emission spectra (e.g., GFP-derivatives and RFP-derivatives); and 2), higher penetration depths in tissue (up to 80%) at higher resolution and with reduced photobleaching and phototoxicity. This tool opens up new opportunities for deep-tissue imaging and will have a tremendous impact on the choice of protein fluorophores for intravital applications in bioscience and biomedicine, as we demonstrate in this work.  相似文献   

15.
Flow cytometers based on optical sensing utilize external light sources and fluorescent dyes to measure one or more specific components or properties of individual cells or subcellular particles in liquid suspension. To provide for independent excitation of two dyes used in double staining experiments we have constructed a high resolution flow cytometer that uses two laser beams to provide two wavelengths of excitation. These beams are separated spatially so that cells flow through them sequentially, with a time separation of about 20 musec. Since the dyes are excited sequentially their emission occurs at different times and their emission spectra may overlap without causing any difficulty in analysis. We have developed new light collection optics that permit up to four measurements to be made on each cell. This approach greatly increases the number of dye combinations that can be used in flow cytometry, thus removing a significant limitation of single illumination instruments.  相似文献   

16.
Two-photon laser scanning calcium imaging has emerged as a useful method for the exploration of neural function and structure at the cellular and subcellular level in vivo. The applications range from imaging of subcellular compartments such as dendrites, spines and axonal boutons up to the functional analysis of large neuronal or glial populations. However, the depth penetration is often limited to a few hundred micrometers, corresponding, for example, to the upper cortical layers of the mouse brain. Light scattering and aberrations originating from refractive index inhomogeneties of the tissue are the reasons for these limitations. The depth penetration of two-photon imaging can be enhanced through various approaches, such as the implementation of adaptive optics, the use of three-photon excitation and/or labeling cells with red-shifted genetically encoded fluorescent sensors. However, most of the approaches used so far require the implementation of new instrumentation and/or time consuming staining protocols. Here we present a simple approach that can be readily implemented in combination with standard two-photon microscopes. The method involves an optimized protocol for depth-restricted labeling with the red-shifted fluorescent calcium indicator Cal-590 and benefits from the use of ultra-short laser pulses. The approach allows in vivo functional imaging of neuronal populations with single cell resolution in all six layers of the mouse cortex. We demonstrate that stable recordings in deep cortical layers are not restricted to anesthetized animals but are well feasible in awake, behaving mice. We anticipate that the improved depth penetration will be beneficial for two-photon functional imaging in larger species, such as non-human primates.  相似文献   

17.
Qifeng Li 《Biophysical journal》2009,97(12):3224-3228
We report applications of two-photon excitation fluorescence (2PEF) microscopy with subdiffraction-limit resolution for green-fluorescent-protein-tagged cell imaging. The microscope integrates 2PEF microscopy and stimulated emission depletion microscopy in one microscope that has the benefits of both techniques: intrinsic three-dimensional resolution, confined photobleaching, and subdiffraction-limit resolution. The subdiffraction-limit resolution was demonstrated by resolving green-fluorescent-protein-tagged caveolar vesicles located within a distance shorter than the diffraction limit of a regular 2PEF microscope, which is ∼250 nm even with the best optics. The full width at half-maximum of the effective point-spread function for the 2PEF microscope was estimated to be ∼54 nm.  相似文献   

18.
This protocol outlines a procedure for collecting and analyzing point spread functions (PSFs). It describes how to prepare fluorescent microsphere samples, set up a confocal microscope to properly collect 3D confocal image data of the microspheres and perform PSF measurements. The analysis of the PSF is used to determine the resolution of the microscope and to identify any problems with the quality of the microscope's images. The PSF geometry is used as an indicator to identify problems with the objective lens, confocal laser scanning components and other relay optics. Identification of possible causes of PSF abnormalities and solutions to improve microscope performance are provided. The microsphere sample preparation requires 2-3 h plus an overnight drying period. The microscope setup requires 2 h (1 h for laser warm up), whereas collecting and analyzing the PSF images require an additional 2-3 h.  相似文献   

19.
Fluorescence resonance energy transfer (FRET) between fluorescent proteins (FPs) is a powerful method to visualize and quantify protein-protein interaction in living cells. Unfortunately, the emission bleed-through of FPs limits the usage of this complex technique. To circumvent undesirable excitation of the acceptor fluorophore, using two-photon excitation, we searched for FRET pairs that show selective excitation of the donor but not of the acceptor fluorescent molecule. We found this property in the fluorescent cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP) and YFP/mCherry FRET pairs and performed two-photon excited FRET spectral imaging to quantify protein interactions on the later pair that shows better spectral discrimination. Applying non-negative matrix factorization to unmix two-photon excited spectral imaging data, we were able to eliminate the donor bleed-through as well as the autofluorescence. As a result, we achieved FRET quantification by means of a single spectral acquisition, making the FRET approach not only easy and straightforward but also less prone to calculation artifacts. As an application of our approach, the intermolecular interaction of amyloid precursor protein and the adaptor protein Fe65 associated with Alzheimer's disease was quantified. We believe that the FRET approach using two-photon and fluorescent YFP/mCherry pair is a promising method to monitor protein interaction in living cells.  相似文献   

20.
We describe a custom one-photon (confocal) and two-photon all-digital (photon counting) laser scanning microscope. The confocal component uses two avalanche photodiodes (APDs) as the fluorescence detector to achieve high sensitivity and to overcome the limited photon counting rate of a single APD ( approximately 5 MHz). The confocal component is approximately nine times more efficient than our commercial confocal microscope (fluorophore fluo 4). Switching from one-photon to two-photon excitation mode (Ti:sapphire laser) is accomplished by moving a single mirror beneath the objective lens. The pulse from the Ti:sapphire laser is 109 fs in duration at the specimen plane, and average power is approximately 5 mW. Two-photon excited fluorescence is detected by a fast photomultiplier tube. With a x63 1.4 NA oil-immersion objective, the resolution of the confocal system is 0.25 microm laterally and 0.52 microm axially. For the two-photon system, the corresponding values are 0.28 and 0.82 microm. The system is advantageous when excitation intensity must be limited, when fluorescence is low, or when thick, scattering specimens are being studied (with two-photon excitation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号