首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel benzothiepin-derived compounds are described as potent selective modulators of the human estrogen receptor (SERMs). The objective of the study is to evaluate the antiproliferative effects of the compounds on human MCF-7 breast tumor cells. These heterocyclic compounds contain the traditional triarylethylene arrangement exemplified by tamoxifen, conformationally restrained through the incorporation of the benzothiepin ring system. The compounds demonstrated potency at nanomolar concentrations in antiproliferative assays against an MCF-7 human breast cancer cell line with low cytotoxicity. The compounds exhibited low nanomolar binding affinity for the estrogen receptor (ER) with some specificity for ERβ, and also demonstrate potent antiestrogenic properties in the human uterine Ishikawa cell line. The effect of a number of functional group substitutions on the ER binding properties of the benzothiepin molecular scaffold is explored through a brief computational structure-activity relationship investigation with molecular simulation.  相似文献   

2.
A series of novel benzothiepin-derived compounds are described as potent selective modulators of the human estrogen receptor (SERMs). The objective of the study is to evaluate the antiproliferative effects of the compounds on human MCF-7 breast tumor cells. These heterocyclic compounds contain the traditional triarylethylene arrangement exemplified by tamoxifen, conformationally restrained through the incorporation of the benzothiepin ring system. The compounds demonstrated potency at nanomolar concentrations in antiproliferative assays against an MCF-7 human breast cancer cell line with low cytotoxicity. The compounds exhibited low nanomolar binding affinity for the estrogen receptor (ER) with some specificity for ERbeta, and also demonstrate potent antiestrogenic properties in the human uterine Ishikawa cell line. The effect of a number of functional group substitutions on the ER binding properties of the benzothiepin molecular scaffold is explored through a brief computational structure-activity relationship investigation with molecular simulation.  相似文献   

3.
MOTIVATION: The field of 'DNA linguistics' has emerged from pioneering work in computational linguistics and molecular biology. Most formal grammars in this field are expressed using Definite Clause Grammars but these have computational limitations which must be overcome. The present study provides a new DNA parsing system, comprising a logic grammar formalism called Basic Gene Grammars and a bidirectional chart parser DNA-ChartParser. RESULTS: The use of Basic Gene Grammars is demonstrated in representing many formulations of the knowledge of Escherichia coli promoters, including knowledge acquired from human experts, consensus sequences, statistics (weight matrices), symbolic learning, and neural network learning. The DNA-ChartParser provides bidirectional parsing facilities for BGGs in handling overlapping categories, gap categories, approximate pattern matching, and constraints. Basic Gene Grammars and the DNA-ChartParser allowed different sources of knowledge for recognizing E.coli promoters to be combined to achieve better accuracy as assessed by parsing these DNA sequences in real-world data sets.  相似文献   

4.
Intrachromosomal duplications play a significant role in human genome pathology and evolution. To better understand the molecular basis of evolutionary chromosome rearrangements, we performed molecular cytogenetic and sequence analyses of the breakpoint region that distinguishes human chromosome 3p12.3 and orangutan chromosome 2. FISH with region-specific BAC clones demonstrated that the breakpoint-flanking sequences are duplicated intrachromosomally on orangutan 2 and human 3q21 as well as at many pericentromeric and subtelomeric sites throughout the genomes. Breakage and rearrangement of the human 3p12.3-homologous region in the orangutan lineage were associated with a partial loss of duplicated sequences in the breakpoint region. Consistent with our FISH mapping results, computational analysis of the human chromosome 3 genomic sequence revealed three 3p12.3-paralogous sequence blocks on human chromosome 3q21 and smaller blocks on the short arm end 3p26-->p25. This is consistent with the view that sequences from an ancestral site at 3q21 were duplicated at 3p12.3 in a common ancestor of orangutan and humans. Our results show that evolutionary chromosome rearrangements are associated with microduplications and microdeletions, contributing to the DNA differences between closely related species.  相似文献   

5.
A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin.  相似文献   

6.
A series of novel β-lactam containing compounds are described as antiproliferative agents and potential selective modulators of the oestrogen receptor. The purpose of the study is to evaluate the antiproliferative effects of these compounds on human MCF-7 and MDA MB-231 breast cancer cells. The compounds are designed to contain three aryl ring substituents arranged on the heterocyclic azetidin-2-one (β-lactam), thus providing conformationally restrained analogues of the triarylethylene arrangement exemplified in the tamoxifen type structure. The compounds demonstrated potency in antiproliferative assays against MCF-7 human breast cancer cell line at low micromolar to nanomolar concentrations with low cytotoxicity and moderate binding affinity to the oestrogen receptor. The effect of a number of aryl and amine functional group substitutions on the antiproliferative activity of the β-lactam products was explored and a brief computational structure–activity relationship investigation with molecular simulation was investigated.  相似文献   

7.
A series of novel beta-lactam containing compounds are described as antiproliferative agents and potential selective modulators of the oestrogen receptor. The purpose of the study is to evaluate the antiproliferative effects of these compounds on human MCF-7 and MDA MB-231 breast cancer cells. The compounds are designed to contain three aryl ring substituents arranged on the heterocyclic azetidin-2-one (beta-lactam), thus providing conformationally restrained analogues of the triarylethylene arrangement exemplified in the tamoxifen type structure. The compounds demonstrated potency in antiproliferative assays against MCF-7 human breast cancer cell line at low micromolar to nanomolar concentrations with low cytotoxicity and moderate binding affinity to the oestrogen receptor. The effect of a number of aryl and amine functional group substitutions on the antiproliferative activity of the beta-lactam products was explored and a brief computational structure-activity relationship investigation with molecular simulation was investigated.  相似文献   

8.
Variations and similarities in our individual genomes are part of our history, our heritage, and our identity. Some human genomic variants are associated with common traits such as hair and eye color, while others are associated with susceptibility to disease or response to drug treatment. Identifying the human variations producing clinically relevant phenotypic changes is critical for providing accurate and personalized diagnosis, prognosis, and treatment for diseases. Furthermore, a better understanding of the molecular underpinning of disease can lead to development of new drug targets for precision medicine. Several resources have been designed for collecting and storing human genomic variations in highly structured, easily accessible databases. Unfortunately, a vast amount of information about these genetic variants and their functional and phenotypic associations is currently buried in the literature, only accessible by manual curation or sophisticated text text-mining technology to extract the relevant information. In addition, the low cost of sequencing technologies coupled with increasing computational power has enabled the development of numerous computational methodologies to predict the pathogenicity of human variants. This review provides a detailed comparison of current human variant resources, including HGMD, OMIM, ClinVar, and UniProt/Swiss-Prot, followed by an overview of the computational methods and techniques used to leverage the available data to predict novel deleterious variants. We expect these resources and tools to become the foundation for understanding the molecular details of genomic variants leading to disease, which in turn will enable the promise of precision medicine.  相似文献   

9.
Understanding cardiac blood flow patterns is important in the assessment of cardiovascular function. Three-dimensional flow and relative pressure fields within the human left ventricle are demonstrated by combining velocity measurements with computational fluid mechanics methods. The velocity field throughout the left atrium and ventricle of a normal human heart is measured using time-resolved three-dimensional phase-contrast MRI. Subsequently, the time-resolved three-dimensional relative pressure is calculated from this velocity field using the pressure Poisson equation. Noninvasive simultaneous assessment of cardiac pressure and flow phenomena is an important new tool for studying cardiac fluid dynamics.  相似文献   

10.
11.
There are currently a large number of “orphan” G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure along the genomic sequence simultaneously with the temporal evolutionary path structure across species and show how such models can be used to discover new functional molecules, in particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic models. This computational method was used for identifying novel prohormones and the processed peptide sites by producing sequence alignments across many species at the functional-element level. Experimental results with an initial implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54 prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate the computational methodology, we present the basic molecular biological characterization of the novel putative peptide hormone, including its identification and regional localization in the brain. This species comparison, HMM-based computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of this approach will have a great impact on our understanding of GPCRs and associated pathways and help to identify new targets for drug development.  相似文献   

12.
Chemokines are small secreted proteins with important roles in immune responses. They consist of a conserved three-dimensional (3D) structure, so-called IL8-like chemokine fold, which is supported by disulfide bridges characteristic of this protein family. Sequence- and profile-based computational methods have been proficient in discovering novel chemokines by making use of their sequence-conserved cysteine patterns. However, it has been recently shown that some chemokines escaped annotation by these methods due to low sequence similarity to known chemokines and to different arrangement of cysteines in sequence and in 3D. Innovative methods overcoming the limitations of current techniques may allow the discovery of new remote homologs in the still functionally uncharacterized fraction of the human genome. We report a novel computational approach for proteome-wide identification of remote homologs of the chemokine family that uses fold recognition techniques in combination with a scaffold-based automatic mapping of disulfide bonds to define a 3D profile of the chemokine protein family. By applying our methodology to all currently uncharacterized human protein sequences, we have discovered two novel proteins that, without having significant sequence similarity to known chemokines or characteristic cysteine patterns, show strong structural resemblance to known anti-HIV chemokines. Detailed computational analysis and experimental structural investigations based on mass spectrometry and circular dichroism support our structural predictions and highlight several other chemokine-like features. The results obtained support their functional annotation as putative novel chemokines and encourage further experimental characterization. The identification of remote homologs of human chemokines may provide new insights into the molecular mechanisms causing pathologies such as cancer or AIDS, and may contribute to the development of novel treatments. Besides, the genome-wide applicability of our methodology based on 3D protein family profiles may open up new possibilities for improving and accelerating protein function annotation processes.  相似文献   

13.
In this article, we introduce and apply our de novo protein design framework, which observes true backbone flexibility, to the redesign of human β-defensin-2, a 41-residue cationic antimicrobial peptide of the innate immune system. The flexible design templates are generated using molecular dynamics simulations with both Generalized Born implicit solvation and explicit water molecules. These backbone templates were employed in addition to the x-ray crystal structure for designing human β-defensin-2. The computational efficiency of our framework was demonstrated with the full-sequence design of the peptide with flexible backbone templates, corresponding to the mutation of all positions except the native cysteines.  相似文献   

14.
The computational identification of oncogenic lesions is still a key open problem in cancer biology. Although several methods have been proposed, they fail to model how such events are mediated by the network of molecular interactions in the cell. In this paper, we introduce a systems biology approach, based on the analysis of molecular interactions that become dysregulated in specific tumor phenotypes. Such a strategy provides important insights into tumorigenesis, effectively extending and complementing existing methods. Furthermore, we show that the same approach is highly effective in identifying the targets of molecular perturbations in a human cellular context, a task virtually unaddressed by existing computational methods. To identify interactions that are dysregulated in three distinct non‐Hodgkin's lymphomas and in samples perturbed with CD40 ligand, we use the B‐cell interactome (BCI), a genome‐wide compendium of human B‐cell molecular interactions, in combination with a large set of microarray expression profiles. The method consistently ranked the known gene in the top 20 (0.3%), outperforming conventional approaches in 3 of 4 cases.  相似文献   

15.
Matrix metalloproteinase-14 (MT1-MMP or MMP-14) is a membrane-associated protease implicated in a variety of tissue remodeling processes and a molecular hallmark of select metastatic cancers. The ability to detect MMP-14 in vivo would be useful in studying its role in pathologic processes and may potentially serve as a guide for the development of targeted molecular therapies. Four MMP-14 specific probes containing a positively charged cell penetrating peptide (CPP) d-arginine octamer (r8) linked with a MMP-14 peptide substrate and attenuating sequences with glutamate (8e, 4e) or glutamate-glycine (4eg and 4egg) repeating units were modeled using an AMBER force field method. The probe with 4egg attenuating sequence exhibited the highest CPP/attenuator interaction, predicting minimized cellular uptake until cleaved. The in vitro MMP-14-mediated cleavage studies using the human recombinant MMP-14 catalytic domain revealed an enhanced cleavage rate that directly correlated with the linearity of the embedded peptide substrate sequence. Successful cleavage and uptake of a technetium-99m labeled version of the optimal probe was demonstrated in MMP-14 transfected human breast cancer cells. Two-fold reduction of cellular uptake was found in the presence of a broad spectrum MMP inhibitor. The combination of computational chemistry, parallel synthesis and biochemical screening, therefore, shows promise as a set of tools for developing new radiolabeled probes that are sensitive to protease activity.  相似文献   

16.
Tyrosinase is the key enzyme involved in the human pigmentation process, as well as the undesired browning of fruits and vegetables. Compounds inhibiting tyrosinase catalytic activity are an important class of cosmetic and dermatological agents which show high potential as depigmentation agents used for skin lightening. The multi-step protocol employed for the identification of novel tyrosinase inhibitors incorporated the Shape Signatures computational algorithm for rapid screening of chemical libraries. This algorithm converts the size and shape of a molecule, as well its surface charge distribution and other bio-relevant properties, into compact histograms (signatures) that lend themselves to rapid comparison between molecules. Shape Signatures excels at scaffold hopping across different chemical families, which enables identification of new actives whose molecular structure is distinct from other known actives. Using this approach, we identified a novel class of depigmentation agents that demonstrated promise for skin lightening product development.  相似文献   

17.
Strockbine B  Rizzo RC 《Proteins》2007,67(3):630-642
Peptides based on C-terminal regions of the human immunodeficiency virus (HIV) viral protein gp41 represent an important new class of antiviral therapeutics called peptide fusion inhibitors. In this study, computational methods were used to model the binding of six peptides that contain residues that pack into a conserved hydrophobic pocket on HIVgp41, an attractive target site for the development of small molecule inhibitors. Free energies of binding were computed using molecular mechanics Generalized Born surface area (MM-GBSA) methods from molecular dynamics (MD) simulations, which employed either explicit (TIP3P) or continuum Generalized Born (GB) water models and strong correlations between experimental and computational affinities were obtained in both cases. Energy decomposition of the TIP3P-MD results (r2 = 0.75) reveals that variation in experimental affinity is highly correlated with changes in intermolecular van der Waals energies (deltaE(vdw)) on both a local (residue-based, r2 = 0.94) and global (peptide-based, r2 = 0.84) scale. The results show that differential association of C-peptides with HIVgp41 is driven solely by changes within the conserved pocket supporting the hypothesis that this region is an important drug target site. Such strong agreement with experiment is notable given the large size of the ligands (34 amino-acids) relative to the small range of experimental affinities (2 kcal/mol) and demonstrates good sensitivity of this computational method for simulating peptide fusion inhibitors. Finally, inspection of simulation trajectories identified a highly populated pi-type hydrogen bond, which formed between Gln575 on the receptor and the aromatic ring of peptide ligand Phe631, which could have important implications for drug design.  相似文献   

18.
Li W  Zhang M  Zhang JL  Li HQ  Zhang XC  Sun Q  Qiu CM 《FEBS letters》2006,580(20):4905-4910
The potential interaction of daidzin, an ingredient of soy isoflavones, with human telomeric antiparallel G-quadruplex dAG(3)(T(2)AG(3))(3) was studied using ESI-MS, PAGE, CD and molecular simulation. Experimental studies indicated that daidzin molecules interacted with dAG(3)(T(2)AG(3))(3) and formed DNA-daidzin complex with the stoichiometric ratio of 1:1 and 1:2. The transition temperature of the G-quadruplex increased at higher ratio of daidzin to DNA. Under molecular crowding conditions the interactions between daidzin and the G-quadruplex become much stronger. Combining computational simulation and experimental results, it is demonstrated that the dAG(3)(T(2)AG(3))(3)/daidzin complex with a stoichiometric ratio of 1:1 is stabilized through the pi-pi conjugacy interactions and hydrogen bondings between daidzin and the bases of G-quadruplex. This work provides guidance not only on exploring the molecular anti-cancer mechanism of dietary isoflavones, but also searching small natural products as promising anticancer candidates that can inhibit telomerase activity.  相似文献   

19.
The inhibition effects of enantiomerically pure alpha-(N-benzylamino)benzylphosphonic acids and their derivatives on human prostatic acid phosphatase have been investigated. As expected, (R)-alpha-(N-benzylamino)benzylphosphonic acid demonstrated higher affinity for the enzyme than (S)-enantiomer. At the same time, (1R,2S)-phenyl[(1-phenylethyl)amino]methylphosphonic acid was found to be a significantly weaker inhibitor than its (1S,2R)-analogue. The enantioselectivity has been explained using a molecular modeling approach by computational docking of inhibitors into active center of prostatic acid phosphatase.  相似文献   

20.
Existing views on prorenin are conflicting and its physiological activation mechanism is not clear. In an attempt to obtain clearcut views on the molecular properties of prorenin in human plasma, the renin zymogen (prorenin) was separated from active renin by two steps of affinity chromatography and it was demonstrated that prorenin is a completely inactivate zymogen contrary to the existing information. Inactive prorenin has an apparent molecular of 56,000 contrary to 46,000-43,000 of partially active prorenin. Isolated and acid-treated human prorenin was shown to be activated by kallikreins from human urine and plasma. This activation was completely blocked by Trasylol. Hog pancreatic kallikrein also activated human prorenin. The kallikrein mediated activation of prorenin indicates the existence of a new link between the vasoconstricting renin-angiotensin system and the vasodilating kallikreinkinin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号