首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemotaxis towards maltose is specifically defective in many strains of Escherichia coli carrying mutations affecting lamB, the gene coding for the outer membrane receptor for bacteriophage lambda. However, with one exception, the most extreme effect of lamB mutants on the maltose response as determined in the capillary assay is a shift to higher sugar concentrations and a reduction in the number of bacteria accumulated to about 25% of the wild-type level. The severity of the taxis defect is strongly correlated with reduced ability of the cells to take up the maltose present at 1 and 10 muM. Evidence presented here and in the accompanying paper indicates that the lambda receptor is involved in the transport of maltose at these concentrations. The effects of lamB mutations on maltose taxis can be explained by postulating that the high-affinity maltose transport system in which the lambda receptor participates transfers maltose from the surrounding medium across the outer membrane and into the periplasmic space. If the maltose chemoreceptor detects sugar present in the periplasmic space, and not molecules external to the outer membrane, then defective transport of low concentrations of maltose into the periplasm would result in the observed apparent reduction in the sensitivity of the maltose receptor. Thus, the lambda receptor protein would participate in maltose chemorecepton only indirectly through its role in maltose transport.  相似文献   

2.
3.
Glucose-negative mutants of Mycoplasma capricolum were selected for growth on fructose in the presence of the toxic glucose analog alpha-methyl-D-glucopyranoside. The mutants are defective in the phosphoenolpyruvate:sugar phosphotransferase system for glucose. One mutant, pts-4, was studied in detail. It lacks the glucose-specific, membrane-bound enzyme II, IIGlc, as well as the general, low-molecular-weight, phosphocarrier protein, HPr. In place of the latter, however, it has a fructose-specific protein, HPrFru. Consistent with these changes, the mutant lost the ability to grow on glucosamine and maltose but retained its ability to grow on sucrose. In the glucose-negative mutant, glucose did not regulate the intracellular concentration of cyclic AMP. The intracellular concentration of cyclic AMP in M. capricolum is regulated by the presence of metabolizable sugars. In the wild-type, both glucose and fructose reduced the intracellular concentration of cyclic AMP; however, in the glucose-negative mutant, glucose no longer regulated the intracellular level of cyclic AMP.  相似文献   

4.
To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.  相似文献   

5.
We have isolated fission yeast mutants that constitutively flocculate upon growth in liquid media. One of these mutants, the gsf1 mutant, was found to cause dominant, nonsexual, and calcium-dependent aggregation of cells into flocs. Its flocculation was inhibited by the addition of galactose but was not affected by the addition of mannose or glucose, unlike Saccharomyces cerevisiae FLO mutants. The gsf1 mutant coflocculated with Schizosaccharomyces pombe wild-type cells, while no coflocculation was found with galactose-deficient (gms1Δ) cells. Moreover, flocculation of the gsf1 mutant was also inhibited by addition of cell wall galactomannan from wild-type cells but not from gms1Δ cells. These results suggested that galactose residues in the cell wall glycoproteins may be receptors of gsf1-mediated flocculation, and therefore cell surface galactosylation is required for nonsexual flocculation in S. pombe.  相似文献   

6.
Brevibacterium flavum mutants defective in the phosphoenolpyruvate (PEP)-dependent glucose phosphotransferase system (PTS) were selected with high frequency by 2-deoxyglucose-resistance. Most of them (DOGr) still had the fructose-PTS and grew not only on fructose but also on glucose like the wild-type strain. A mutant having 1 /8th the fructose-PTS activity of the wild strain but normal glucose-PTS activity was isolated as a xylitol-resistant mutant. It grew on glucose but not on fructose. The glucose-PTS was active on glucose, glucosamine, 2-deoxyglucose and mannose, and slightly on methyl-a-glucoside and N-acetylglucosamine, but not on fructose or xylitol. The fructose-PTS acted on fructose and xylitol, and to some extent on glucose but not on glucosamine or 2-deoxyglucose. Mutants unable to grow on glucose (DOGrGlc-) derived from a DOGr mutant were all defective in the fructose-PTS. All revertants able to grow on glucose derived from a DOGrGlc“ mutant had the fructose-PTS. The glucokinase activity was about 2/3rds the glucose activity of the fructose-PTS. All the DOGrGlc- mutants had normal levels of glucokinase. One of these mutants grew on maltose and sucrose, which were hydrolyzed to glucose. Thus, glucokinase seems to contribute to the phosphorylation of glucose liberated inside the cell. The fructose-PTS was induced by fructose and repressed by glucose. The glucose repression was not observed in a mutant defective in the glucose-PTS.  相似文献   

7.
We have isolated a new class of respiration-defective, i.e petite, mutants of the yeast Saccharomyces cerevisiae. Mutations in the GEF1 gene cause cells to grow slowly on rich media containing carbon sources utilized by respiration. This phenotype is suppressed by adding high concentrations of iron to the growth medium. Gef1 ? mutants also fail to grow on a fermentable carbon source, glucose, when iron is reduced to low concentrations in the medium, suggesting that the GEF1 gene is required for efficient metabolism of iron during growth on fermentable as well as respired carbon sources. However, activity of the iron uptake system appears to be unaffected in gef1 ? mutants. Fe(II) transporter activity and regulation is normal in gef1 ? mutants. Fe(III) reductase induction during iron-limited growth is disrupted, but this appears to be a secondary effect of growth rate alterations. The wild-type GEF1 gene was cloned and sequenced; it encodes a protein of 779 amino acids, 13 possible transmembrane domains, and significant similarity to chloride channel proteins from fish and mammals, suggesting that GEF1 encodes an integral membrane protein. A gef1 ? deletion mutation generated in vitro and introduced into wild-type haploid strains by gene transplacement was not lethal. Oxygen consumption by intact gef1 ? cells and by mitochondrial fractions isolated from gef1 ? mutants was reduced 25–50% relative to wild type, indicating that mitochondrial function is defective in these mutants. We suggest that GEF1 encodes a transport protein that is involved in intracellular iron metabolism.  相似文献   

8.
Mitochondrial control of sugar utilization in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2  
H R Mahler  D Wilkie 《Plasmid》1978,1(2):125-133
When a number of wild-type strains of Saccharomyces cerevisiae—all capable of utilizing the three sugars galactose, maltose, and α-methyl-d-glucoside for growth—were converted by ethidium bromide (EtdBr) mutagenesis to stable cytoplasmic petite (rho?) mutants, the latter lost the ability to grow on one or more of these sugars. The actual pattern of retention (or loss) or sugar utilization by these mutants depended on the wild-type strain, but was independent of the length of exposure to EtdBr during mutagenesis. This treatment varied from 0.5 to 24 h, by which time the majority of the mutants must have been of the mitochondrial (mt) DNA-deficient rho0 type. Furthermore, with one exception—involving the ability of one set of mutants to utilize α-methyl-glucoside—all rho? mutants derived from the same wild type exhibited the same, discrete pattern of sugar utilization. Respiration-deficient mutants with defined lesions in their mtDNA (mit? mutants) exhibited the same pattern of sugar utilization as did the petite mutants of the same strain. Diploid petite strains also exhibited discrete, but less stringent, patterns of sugar utilization. For any one genotype this pattern was identical whether the mutant was generated by crossing two haploid rho? strains, themselves derived by EtdBr mutagenesis, or by EtdBr mutagenesis of the diploid obtained from a haploid wild-type × wild-type cross. In such mutant diploids the sugar-positive phenotype was usually dominant, but there were indications in some instances of modulation of this effect by virtue of nuclear gene interactions. Various respiration-deficient mutants incapable of utilizing α-methylglucoside also were unable to form α-glucosidase, but were able to do so after being rendered permeable by exposure to dimethyl sulfoxide. Arguments are advanced that respiring mitochondria generate an entity—probably not directly related to ATP production—required for the expression of nuclear genes or their products, some of which may be necessary for plasma membrane function.  相似文献   

9.
In previous work (Brooker, R. J., and Wilson, T. H. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3959-3963), lactose permease mutants were isolated which possessed an enhanced recognition for maltose. In some of these mutants, the wild-type alanine residue at position 177 was changed to valine or threonine. To gain further insight into the side chain requirement at position 177 that confers maltose recognition, further substitutions of isoleucine, leucine, phenylalanine, proline, and serine have been made via site-directed mutagenesis. Permeases containing alanine or serine exhibited poor maltose recognition whereas those containing isoleucine, leucine, phenylalanine, proline, or valine showed moderate or good recognition. As far as galactosides are concerned, the Val-177, Pro-177, and Ser-177 mutants were able to transport lactose as well as, or slightly better than, the wild-type strain. The other mutants displayed moderately reduced levels of lactose transport. For example, the Phe-177 mutant, which was the most defective, showed a level of downhill transport which was approximately 20% that of the wild-type strain. In uphill transport assays, all of the position 177 mutants were markedly defective in their ability to accumulate beta-D-thiomethylgalactopyranoside against a concentration gradient. Finally, the position 177 mutants were analyzed for their ability to catalyze an H+ leak. Interestingly, even though the wild-type permease does not leak H+ across the bacterial membrane, all of the position 177 mutants were shown to transport H+ in the absence of sugars. For most of the mutants, this H+ leak was blocked by the addition of beta-D-thiodigalactoside. Overall, these results are discussed with regard to the effects of position 177 substitutions on the sugar recognition site and H+ transport.  相似文献   

10.
Active transport of maltose in Escherichia coli requires the presence of both maltose-binding protein (MBP) in the periplasm and a complex of MalF, MalG, and MalK proteins (FGK2) located in the cytoplasmic membrane. Earlier, mutants in malF or malG were isolated that are able to grow on maltose in the complete absence of MBP. When the wild-type malE+ allele, coding for MBP, was introduced into these MBP-independent mutants, they frequently lost their ability to grow on maltose. Furthermore, starting from these Mal- strains, Mal+ secondary mutants that contained suppressor mutations in malE were isolated. In this study, we examined the interaction of wild-type and mutant MBPs with wild-type and mutant FGK2 complexes by using right-side-out membrane vesicles. The vesicles from a MBP-independent mutant (malG511) transported maltose in the absence of MBP, with Km and Vmax values similar to those found in intact cells. However, addition of wild-type MBP to these mutant vesicles produced unexpected responses. Although malE+ malG511 cells could not utilize maltose, wild-type MBP at low concentrations stimulated the maltose uptake by malG511 vesicles. At higher concentrations of the wild-type MBP and maltose, however, maltose transport into malG511 vesicles became severely inhibited. This behaviour of the vesicles was also reflected in the phenotype of malE+ malG511 cells, which were found to be capable of transporting maltose from a low external concentration (1 microM), but apparently not from millimolar concentrations present in maltose minimal medium. We found that the mutant FGK2 complex, containing MalG511, had a much higher apparent affinity towards the wild-type MBP than did the wild-type FGK2 complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Pediococcus damnosus can coflocculate with Saccharomyces cerevisiae and cause beer acidification that may or may not be desired. Similar coflocculations occur with other yeasts except for Schizosaccharomyces pombe which has galactose-rich cell walls. We compared coflocculation rates of S. pombe wild-type species TP4-1D, having a mannose-to-galactose ratio (Man:Gal) of 5 to 6 in the cell wall, with its glycosylation mutants gms1-1 (Man:Gal = 5:1) and gms1Δ (Man:Gal = 1:0). These mutants coflocculated at a much higher level (30 to 45%) than that of the wild type (5%). Coflocculation of the mutants was inhibited by exogenous mannose but not by galactose. The S. cerevisiae mnn2 mutant, with a mannan content similar to that of gms1Δ, also showed high coflocculation (35%) and was sensitive to mannose inhibition. Coflocculation of P. damnosus and gms1Δ (or mnn2) also could be inhibited by gms1Δ mannan (with unbranched α-1,6-linked mannose residues), concanavalin A (mannose and glucose specific), or NPA lectin (specific for α-1,6-linked mannosyl units). Protease treatment of the bacterial cells completely abolished coflocculation. From these results we conclude that mannose residues on the cell surface of S. pombe serve as receptors for a P. damnosus lectin but that these receptors are shielded by galactose residues in wild-type strains. Such interactions are important in the production of Belgian acid types of beers in which mixed cultures are used to improve flavor.  相似文献   

12.
We have isolated a new class of respiration-defective, i.e petite, mutants of the yeast Saccharomyces cerevisiae. Mutations in the GEF1 gene cause cells to grow slowly on rich media containing carbon sources utilized by respiration. This phenotype is suppressed by adding high concentrations of iron to the growth medium. Gef1 mutants also fail to grow on a fermentable carbon source, glucose, when iron is reduced to low concentrations in the medium, suggesting that the GEF1 gene is required for efficient metabolism of iron during growth on fermentable as well as respired carbon sources. However, activity of the iron uptake system appears to be unaffected in gef1 mutants. Fe(II) transporter activity and regulation is normal in gef1 mutants. Fe(III) reductase induction during iron-limited growth is disrupted, but this appears to be a secondary effect of growth rate alterations. The wild-type GEF1 gene was cloned and sequenced; it encodes a protein of 779 amino acids, 13 possible transmembrane domains, and significant similarity to chloride channel proteins from fish and mammals, suggesting that GEF1 encodes an integral membrane protein. A gef1 deletion mutation generated in vitro and introduced into wild-type haploid strains by gene transplacement was not lethal. Oxygen consumption by intact gef1 cells and by mitochondrial fractions isolated from gef1 mutants was reduced 25–50% relative to wild type, indicating that mitochondrial function is defective in these mutants. We suggest that GEF1 encodes a transport protein that is involved in intracellular iron metabolism.  相似文献   

13.
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.  相似文献   

14.
A β-phosphoglucomutase (β-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of β-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h−1, while the deletion of β-PGM resulted in a maximum specific growth rate of 0.05 h−1 on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as β-glucose 1-phosphate in the medium. Furthermore, the β-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of α-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the β-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded β-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

15.
Summary A number of 2-deoxy-d-glucose (2-DOG) resistant mutants exhibiting resistance to glucose repression were isolated from variousSaccharomyces yeast strains. Most of the mutants isolated were observed to have improved maltose uptake ability in the presence of glucose. Fermentation studies indicated that maltose was taken up at a faster rate and glucose taken up at a slower rate in the mutant strains compared to the parental strains, when these sugars were fermented together. When these sugars were fermented separately, only the 2-DOG resistant mutant obtained fromSaccharomyces cerevisiae strain 1190 exhibited alterations in glucose and maltose uptake compared to the parental strain. Kinetic analysis of sugar transport employing radiolabelled glucose and maltose indicated that both glucose and maltose were transported with higher rates in the mutant strain. These results suggested that the high affinity glucose transport system was regulated by glucose repression in the parental strain but was derepressed in the mutant.  相似文献   

16.
Citrate transport in Salmonella typhimurium.   总被引:3,自引:0,他引:3  
Citrate was rapidly metabolized in wild-type cells of Salmonella typhimurium but actively accumulated in both aconitase mutants and fluorocitrate-poisoned cells. In aconitase mutants citrate was transported by a single high affinity system (Km 23 μm, Vmax 27.2 nmol min?1 mg?1), characterized by a single pH optimum of 7.0 and a Q10 of 3.0, and was stimulated by Na+. cis-Aconitate, tricarballylate, trans-aconitate, and dl-fluorocitrate were weak competitive inhibitors of citrate transport whereas various other tricarboxylic acid cycle intermediates and carboxylates were ineffective. Spontaneous citrate transport mutants were unable to oxidize citrate, cis-aconitate, or tricarballylate. Such mutants were specific for citrate and transported dicarboxylates normally whereas dicarboxylate transport mutants transported and oxidized citrate normally. In whole cells of an aconitase mutant citrate transport was strongly dependent on an energy source. d(?)-Lactate dehydrogenase mutants were singularly defective in energization by d(?)-lactate. Membrane vesicles of wild-type cells were capable of energized transport by d(?)-lactate or ascorbate-phenyl-methyl sulfonate. Citrate transport in whole cells was primarily energized aerobically, and ATPase deficient mutants were still able to transport citrate in whole cells.  相似文献   

17.
The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and β cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced β cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic β cell development and insulin secretion.  相似文献   

18.
Maltose chemoreceptor of Escherichia coli.   总被引:33,自引:24,他引:9       下载免费PDF全文
Strains carrying mutations in the maltose system of Escherichia coli were assayed for maltose taxis, maltose uptake at 1 and 10 muM maltose, and maltose-binding activity released by osmotic shock. An earlier conclusion that the metabolism of maltose is not necessary for chemoreception is extended to include the functioning of maltodextrin phosphorylase, the product of malP, and the genetic control of the maltose receptor by the product of malT is confirmed. Mutants in malF and malK are defective in maltose transport at low concentrations as well as high concentrations, as previously shown, but are essentially normal in maltose taxis. The product of malE has been previously shown to be the maltose-binding protein and was implicated in maltose transport. Most malE mutants are defective in maltose taxis, and all those tested are defective in maltose transport at low concentrations. Thus, as previously suggested, the maltose-binding protein probably serves as the recognition component of the maltose receptor, as well as a component of the transport system. tsome malE mutants release maltose-binding activity and are tactic toward maltose, although defective in maltose transport, implying that the binding protein has separate sites for interaction with the chemotaxis and transport systems. Some mutations in lamB, whose product is the receptor for the bacteriophage lamba, cause defects in maltose taxis, indicating some involvement of that product in maltose reception.  相似文献   

19.
The cdc6 mutants of Schizosaccharomyces pombe have been classified as being defective in progression through the G2 phase of the cell cycle. We cloned an S. pombe gene that could complement the temperature-sensitive growth of the cdc6-23 mutant. Unexpectedly, the cloned gene was allelic to pol3, which encodes the catalytic subunit of DNA polymerase δ. Integration mapping confirmed that cdc6 and pol3 are identical. The cdc6-23 mutant carries one amino acid substitution in the conserved N3 region of Pol3.  相似文献   

20.
In Escherichia coli, several systems are known to transport glucose into the cytoplasm. The main glucose uptake system under batch conditions is the glucose phosphoenolpyruvate:carbohydrate phosphotransferase system (glucose PTS), but the mannose PTS and the galactose and maltose transporters also can translocate glucose. Mutant strains which lack the enzyme IIBC (EIIBC) protein of the glucose PTS have been investigated previously because their lower rate of acetate formation offers advantages in industrial applications. Nevertheless, a systematic study to analyze the impact of the different glucose uptake systems has not been undertaken. Specifically, how the bacteria cope with the deletion of the major glucose uptake system and which alternative transporters react to compensate for this deficit have not been studied in detail. Therefore, a series of mutant strains were analyzed in aerobic and anaerobic batch cultures, as well as glucose-limited continuous cultivations. Deletion of EIIBC disturbs glucose transport severely in batch cultures; cyclic AMP (cAMP)-cAMP receptor protein (CRP) levels rise, and induction of the mgl operon occurs. Nevertheless, Mgl activity is not essential for growth of these mutants, since deletion of this transporter did not affect the growth rate; the activities of the remaining transporters seem to be sufficient. Under conditions of glucose limitation, mgl is upregulated 23-fold compared to levels for growth under glucose excess. Despite the strong induction of mgl upon glucose limitation, deletion of this transport system did not lead to further changes. Although the galactose transporters are often regarded as important for glucose uptake at micromolar concentrations, the glucose as well as mannose PTS might be sufficient for growth at this relatively low dilution rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号