首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cone photoreceptor disorders form a clinical spectrum of diseases that include progressive cone dystrophy (CD) and complete and incomplete achromatopsia (ACHM). The underlying disease mechanisms of autosomal recessive (ar)CD are largely unknown. Our aim was to identify causative genes for these disorders by genome-wide homozygosity mapping. We investigated 75 ACHM, 97 arCD, and 20 early-onset arCD probands and excluded the involvement of known genes for ACHM and arCD. Subsequently, we performed high-resolution SNP analysis and identified large homozygous regions spanning the PDE6C gene in one sibling pair with early-onset arCD and one sibling pair with incomplete ACHM. The PDE6C gene encodes the cone α subunit of cyclic guanosine monophosphate (cGMP) phosphodiesterase, which converts cGMP to 5′-GMP, and thereby plays an essential role in cone phototransduction. Sequence analysis of the coding region of PDE6C revealed homozygous missense mutations (p.R29W, p.Y323N) in both sibling pairs. Sequence analysis of 104 probands with arCD and 10 probands with ACHM revealed compound heterozygous PDE6C mutations in three complete ACHM patients from two families. One patient had a frameshift mutation and a splice defect; the other two had a splice defect and a missense variant (p.M455V). Cross-sectional retinal imaging via optical coherence tomography revealed a more pronounced absence of cone photoreceptors in patients with ACHM compared to patients with early-onset arCD. Our findings identify PDE6C as a gene for cone photoreceptor disorders and show that arCD and ACHM constitute genetically and clinically overlapping phenotypes.  相似文献   

2.
Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM, and all encode functional components of the phototransduction cascade in cone photoreceptors. Applying a functional-candidate-gene approach that focused on screening additional genes involved in this process in a cohort of 611 index cases with ACHM or other cone photoreceptor disorders, we detected a homozygous single base change (c.35C>G) resulting in a nonsense mutation (p.Ser12) in PDE6H, encoding the inhibitory γ subunit of the cone photoreceptor cyclic guanosine monophosphate phosphodiesterase. The c.35C>G mutation was present in three individuals from two independent families with a clinical diagnosis of incomplete ACHM and preserved short-wavelength-sensitive cone function. Moreover, we show through immunohistochemical colocalization studies in mouse retina that Pde6h is evenly present in all retinal cone photoreceptors, a fact that had been under debate in the past. These findings add PDE6H to the set of genes involved in autosomal-recessive cone disorders and demonstrate the importance of the inhibitory γ subunit in cone phototransduction.  相似文献   

3.
Cyclic nucleotide-gated (CNG) ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM). ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD) simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ) domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.  相似文献   

4.
Achromatopsia (ACHM) or rod monochromacy is an autosomal recessive and genetically heterogeneous retinal disorder. It is characterized by a lack of color discrimination, poor visual acuity, photodysphoria, pendular infantile nystagmus, and abnormal photopic electroretinographic (ERG) recordings with preservation of rod-mediated function. Mutations in three known genes are causative; including genes for the α and β subunits of the cyclic nucleotide-gated cation channel (CNGA3 and CNGB3, respectively) and cone photoreceptor transducin—GNAT2. We investigated the prevalence of mutations in achromatopsia-causing genes in a cohort of 16 families with both clinical and electrophysiologic evidence consistent with autosomal recessive transmission, including one subject with achromatopsia and maternal isodisomy for chromosome 14. The most frequent mutation, p.T383fsX in CNGB3, accounted for 75% (18/24) of disease-associated alleles; intragenic SNPs in unrelated patients revealed transmission of a common haplotype consistent with a founder effect. Homozygous p.T383fsX mutation in CNGB3 that maps to chromosome 8 was detected in a patient with achromatopsia and systemic features associated with uniparental disomy (UPD) of chromosome 14. Two novel variants, p.R223G and p.A621E were found in CNGA3. We conclude that CNGA3 and CNGB3 mutations are responsible for the substantial majority of achromatopsia. Furthermore, the CNGB3 mutation p.T383fsX is a predominant mutation, results from a founder effect, and is responsible for the ACHM in the original clinical report of UPD 14.  相似文献   

5.
We have performed linkage analysis in eight families with rod monochromacy, an autosomal recessively inherited condition with complete color blindness. Significant linkage was found with markers located at the pericentromeric region of chromosome 2. A maximum lod score of 5.36 was obtained for marker D2S2333 at θ = 0.00. Mapping of meiotic breakpoints localized the disease gene between markers D2S2187 and D2S2229. Homozygosity for a number of subsequent markers indicating identity by descent was found in two families and provides evidence for a further refinement of the locus proximal to D2S373. This defines an interval of ≈3 cM covering theACHM2locus for rod monochromacy. Radiation hybrid mapping of theCNGA3gene encoding the α-subunit of the cGMP gated cation channel in human cone photoreceptors resulted in a maximum lod score of 16.1 with marker D2S2311 combined with a calculated physical distance of 6.19cR10,000. Screening of the CEPH YAC library and subsequent STS mapping indicated the physical order cen–D2S2222–D2S2175–(D2S2187/D2S2311)–qtel ofmarkers on 2q11 and showed that theCNGA3gene maps most closely to D2S2187 and D2S2311. These data indicate that theCNGA3gene maps within the critical interval of theACHM2locus for rod monochromacy and thus is a candidate gene for this disease.  相似文献   

6.
视网膜母细胞瘤(retinoblastoma,RB)是婴幼儿最常见的眼内恶性肿瘤。在RB进展过程中的关键致病因素目前尚不十分清楚。因此,识别与RB进展密切相关的基因能为病情诊断及基因治疗提供重要信息。然而,肿瘤组织具有很强的细胞异质性,不同病理状态下的细胞,其功能及基因表达都可能呈现显著的差异。本研究从公共基因表达数据库(gene expression omnibus,GEO)下载了1例4个月肿瘤患者和1例2年患者的肿瘤及癌旁组织的单细胞转录组测序数据,从单细胞水平解析不同患病时长的RB肿瘤转录图谱,鉴定与RB进展有潜在关联的细胞亚群及基因集。结果显示,肿瘤组织与癌旁组织在单细胞转录图谱上具有整体的一致性,但视锥前体G1期细胞群、G2期细胞群以及小胶质细胞群在肿瘤与癌旁组织中的分布比例存在明显差异。进一步分析了这3种细胞群在RB肿瘤进展过程中的作用。研究发现,在RB肿瘤的早期阶段,视锥前体细胞在G1期异常增殖,随着RB肿瘤的进展,视锥前体G2期细胞比例显著增加。同时,RB进展过程的小胶质细胞群差异分析结果显示,主要参与免疫应答的关键基因包括RPL23B2M、HLA家族基因。本研究可为RB发病机制及进展研究提供更多新视角和数据资源。  相似文献   

7.
Critical priority pathogens have globally disseminated beyond clinical settings, thereby threatening wildlife. Andean Condors (Vultur gryphus) are essential for ecosystem health and functioning, but their populations are globally near threatened and declining due to anthropogenic activities. During a microbiological and genomic surveillance study of critical priority antibiotic‐resistant pathogens, we identified pandemic lineages of multidrug‐resistant extended‐spectrum β‐lactamase (ESBL)‐producing Escherichia coli colonizing Andean Condors admitted at two wildlife rehabilitation centres in South America. Genomic analysis revealed the presence of genes encoding resistance to hospital and healthcare agents among international E. coli clones belonging to sequence types (STs) ST162, ST602, ST1196 and ST1485. In this regard, the resistome included genes conferring resistance to clinically important cephalosporins (i.e., CTX‐M‐14, CTX‐M‐55 and CTX‐M‐65 ESBL genes), heavy metals (arsenic, mercury, lead, cadmium, copper, silver), pesticides (glyphosate) and domestic/hospital disinfectants, suggesting a link with anthropogenic environmental pollution. On the other hand, the presence of virulence factors, including the astA gene associated with outbreak of childhood diarrhoea and extra‐intestinal disease in animals, was identified, whereas virulent behaviour was confirmed using the Galleria mellonella infection model. E. coli ST162, ST602, ST1196 and ST1485 have been previously identified in humans and food‐producing animals worldwide, indicating that a wide resistome could contribute to rapid adaptation and dissemination of these clones at the human–animal–environment interface. Therefore, these results highlight that Andean Condors have been colonized by critical priority pathogens, becoming potential environmental reservoirs and/or vectors for dissemination of virulent and antimicrobial‐resistant bacteria and/or their genes, in associated ecosystems and wildlife.  相似文献   

8.
Alzheimer's disease (AD) is a common and complex neurodegenerative disease. Age at onset (AAO) of AD is an important component phenotype with a genetic basis, and identification of genes in which variation affects AAO would contribute to identification of factors that affect timing of onset. Increase in AAO through prevention or therapeutic measures would have enormous benefits by delaying AD and its associated morbidities. In this paper, we performed a family‐based genome‐wide association study for AAO of late‐onset AD in whole exome sequence data generated in multigenerational families with multiple AD cases. We conducted single marker and gene‐based burden tests for common and rare variants, respectively. We combined association analyses with variance component linkage analysis, and with reference to prior studies, in order to enhance evidence of the identified genes. For variants and genes implicated by the association study, we performed a gene‐set enrichment analysis to identify potential novel pathways associated with AAO of AD. We found statistically significant association with AAO for three genes (WRN, NTN4 and LAMC3) with common associated variants, and for four genes (SLC8A3, SLC19A3, MADD and LRRK2) with multiple rare‐associated variants that have a plausible biological function related to AD. The genes we have identified are in pathways that are strong candidates for involvement in the development of AD pathology and may lead to a better understanding of AD pathogenesis.  相似文献   

9.
10.
The incidence of Crohn's disease is increasing in many Asian countries, but considerable differences in genetic susceptibility have been reported between Western and Asian populations. This study aimed to fine‐map 23 previously reported Crohn's disease genes and identify their interactions in the Chinese population by Illumina‐based targeted capture sequencing. Our results showed that the genetic polymorphism A>G at rs144982232 in MST1 showed the most significant association (= 1.78 × 10?5; odds ratio = 4.87). JAK2 rs1159782 (T>C) was also strongly associated with Crohn's disease (= 2.34 × 10?4; odds ratio = 3.72). Gene‐gene interaction analysis revealed significant interactions between MST1 and other susceptibility genes, including NOD2, MUC19 and ATG16L1 in contributing to Crohn's disease risk. Main genetic associations and gene‐gene interactions were verified using ImmunoChip data set. In conclusion, a novel susceptibility locus in MST1 was identified. Our analysis suggests that MST1 might interact with key susceptibility genes involved in autophagy and bacterial recognition. These findings provide insight into the genetic architecture of Crohn's disease in Chinese and may partially explain the disparity of genetic signals in Crohn's disease susceptibility across different ethnic populations by highlighting the contribution of gene‐gene interactions.  相似文献   

11.
12.
Chronic obstructive pulmonary disease (COPD) is a complex disease, the pathogenesis of which remains incompletely understood. Colonization with Pneumocystis jirovecii may play a role in COPD pathogenesis; however, the mechanisms by which such colonization contributes to COPD are unknown. The objective of this study was to determine lung gene expression profiles associated with Pneumocystis colonization in patients with COPD to identify potential key pathways involved in disease pathogenesis. Using COPD lung tissue samples made available through the Lung Tissue Research Consortium (LTRC), Pneumocystis colonization status was determined by nested PCR. Microarray gene expression profiles were performed for each sample and the profiles of colonized and non‐colonized samples compared. Overall, 18 participants (8.5%) were Pneumocystis‐colonized. Pneumocystis colonization was associated with fold increase in expression of four closely related genes: INF‐γ and the three chemokine ligands CXCL9, CXCL10, and CXCL11. These ligands are chemoattractants for the common cognate receptor CXCR3, which is predominantly expressed on activated Th1 T‐lymphocytes. Although these ligand–receptor pairs have previously been implicated in COPD pathogenesis, few initiators of ligand expression and subsequent lymphocyte trafficking have been identified: our findings implicate Pneumocystis as a potential trigger. The finding of upregulation of these inflammatory genes in the setting of Pneumocystis colonization sheds light on infectious‐immune relationships in COPD.  相似文献   

13.
Hemophilia is an inherited bleeding disorder caused by a deficiency of functional clotting factors VIII or IX in the blood plasma. The drawbacks of the classical protein substitution therapy fueled interest in alternative treatments by gene therapy. Hemophilia has been recognized as an ideal target disease for gene therapy because a relatively modest increase in clotting factor levels can result in a significant therapeutic benefit. Consequently, introducing a functional FVIII or FIX gene copy into the appropriate target cells could ultimately provide a cure for hemophilic patients. Several cell types have been explored for hemophilia gene therapy, including hepatocytes, muscle, endothelial and hematopoietic cells. Both nonviral and viral vectors have been considered for the development of hemophilia gene therapy, including transposons, γ‐retroviral, lentiviral, adenoviral and adeno‐associated viral vectors. Several of these strategies have resulted in stable correction of the bleeding diathesis in hemophilia A and B murine as well as canine models, paving the way towards clinical trials. Although clotting factor expression has been detected in hemophilic patients treated by gene therapy, the challenge now lies in obtaining prolonged therapeutic FVIII or FIX levels in these patients. This review highlights the benefits and potential risks of the different gene therapy strategies for hemophilia that have been developed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Large‐scale sequencing studies have revealed several genes that are recurrently mutated in melanomas. To annotate the melanoma genome, we have expressed tumor‐associated variants of these genes in zebrafish and characterized their effects on melanocyte development and function. Here, we describe expression of tumor‐associated variants of the recurrently mutated metabotropic glutamate receptor 3 (GRM3) gene. Unlike wild‐type GRM3, tumor‐associated GRM3 variants disrupted trafficking of melanosomes, causing their aggregation in the cell body. Melanosomes are trafficked in a cAMP‐dependent manner, and drugs that directly or indirectly increased cAMP levels were able to suppress melanosome aggregation in mutant GRM3‐expressing melanocytes. Our data show that oncogenic GRM3 variants dysregulate cAMP signaling, a heretofore unknown role for these oncogenes. cAMP signaling has been implicated in melanoma progression and drug resistance, and our data show that oncogenic properties of GRM3 could be mediated, at least in part, by alterations in cAMP signaling.  相似文献   

15.
Plant genes participating in the recognition of aphid herbivory in concert with plant genes involved in defense against herbivores mediate plant resistance to aphids. Several such genes involved in plant disease and nematode resistance have been characterized in detail, but their existence has only recently begun to be determined for arthropod resistance. Hundreds of different genes are typically involved and the disruption of plant cell wall tissues during aphid feeding has been shown to induce defense responses in Arabidopsis, Triticum, Sorghum, and Nicotiana species. Mi‐1.2, a tomato gene for resistance to the potato aphid, Macrosiphum euphorbiae (Thomas), is a member of the nucleotide‐binding site and leucine‐rich region Class II family of disease, nematode, and arthropod resistance genes. Recent studies into the differential expression of Pto‐ and Pti1‐like kinase genes in wheat plants resistant to the Russian wheat aphid, Diuraphis noxia (Mordvilko), provide evidence of the involvement of the Pto class of resistance genes in arthropod resistance. An analysis of available data suggests that aphid feeding may trigger multiple signaling pathways in plants. Early signaling includes gene‐for‐gene recognition and defense signaling in aphid‐resistant plants, and recognition of aphid‐inflicted cell damage in both resistant and susceptible plants. Furthermore, signaling is mediated by several compounds, including jasmonic acid, salicylic acid, ethylene, abscisic acid, giberellic acid, nitric oxide, and auxin. These signals lead to the development of direct chemical defenses against aphids and general stress‐related responses that are well characterized for a number of abiotic and biotic stresses. In spite of major plant taxonomic differences, similarities exist in the types of plant genes expressed in response to feeding by different species of aphids. However, numerous differences in plant signaling and defense responses unique to specific aphid–plant interactions have been identified and warrant further investigation.  相似文献   

16.
17.
Even though parasitic infections are often costly or deadly for the host, we know very little which genes influence parasite susceptibility and disease severity. Proliferative kidney disease is an emerging and, at elevated water temperatures, potentially deadly disease of salmonid fishes that is caused by the myxozoan parasite Tetracapsuloides bryosalmonae. By screening >7.6 K SNPs in 255 wild brown trout (Salmo trutta) and combining association mapping and Random Forest approaches, we identified several candidate genes for both the parasite resistance (inverse of relative parasite load; RPL) and the severe anaemic response to the parasite. The strongest RPL‐associated SNP mapped to a noncoding region of the congeneric Atlantic salmon (S. salar) chromosome 10, whereas the second strongest RPL‐associated SNP mapped to an intronic region of PRICKLE2 gene, which is a part of the planar cell polarity signalling pathway involved in kidney development. The top SNP associated with anaemia mapped to the intron of the putative PRKAG2 gene. The human ortholog of this gene has been associated with haematocrit and other blood‐related traits, making it a prime candidate influencing parasite‐triggered anaemia in brown trout. Our findings demonstrate the power of association mapping to pinpoint genomic regions and potential causative genes underlying climate change‐driven parasitic disease resistance and severity. Furthermore, this work illustrates the first steps towards dissecting genotype–phenotype links in a wild fish population using closely related genome information.  相似文献   

18.
Members of the Ralstonia solanacearum species complex (Rssc) cause bacterial wilt, a devastating plant disease that affects numerous economically important crops. Like other bacterial pests, Rssc injects a cocktail of effector proteins via the bacterial type III secretion system into host cells that collectively promote disease. Given their functional relevance in disease, the identification of Rssc effectors and the investigation of their in planta function are likely to provide clues on how to generate pest‐resistant crop plants. Accordingly, molecular analysis of effector function is a focus of Rssc research. The elucidation of effector function requires corresponding gene knockout strains or strains that express the desired effector variants. The cloning of DNA constructs that facilitate the generation of such strains has hindered the investigation of Rssc effectors. To overcome these limitations, we have designed, generated and functionally validated a toolkit consisting of DNA modules that can be assembled via Golden‐Gate (GG) cloning into either desired gene knockout constructs or multi‐cassette expression constructs. The Ralstonia‐GG‐kit is compatible with a previously established toolkit that facilitates the generation of DNA constructs for in planta expression. Accordingly, cloned modules, encoding effectors of interest, can be transferred to vectors for expression in Rssc strains and plant cells. As many effector genes have been cloned in the past as GATEWAY entry vectors, we have also established a conversion vector that allows the implementation of GATEWAY entry vectors into the Ralstonia‐GG‐kit. In summary, the Ralstonia‐GG‐kit provides a valuable tool for the genetic investigation of genes encoding effectors and other Rssc genes.  相似文献   

19.
Pathogen avirulence (Avr) effectors interplay with corresponding plant resistance (R) proteins and activate robust plant immune responses. Although the expression pattern of Avr genes has been tied to their functions for a long time, it is still not clear how Avr gene expression patterns impact plant‐microbe interactions. Here, we selected PsAvr3b, which shows a typical effector gene expression pattern from a soybean root pathogen Phytophthora sojae. To modulate gene expression, we engineered PsAvr3b promoter sequences by in situ substitution with promoter sequences from Actin (constitutive expression), PsXEG1 (early expression), and PsNLP1 (later expression) using the CRISPR/Cas9. PsAvr3b driven by different promoters resulted in distinct expression levels across all the tested infection time points. Importantly, those mutants with low PsAvr3b expression successfully colonized soybean plants carrying the cognate R gene Rps3b. To dissect the difference in plant responses to the PsAvr3b expression level, we conducted RNA‐sequencing of different infection samples at 24 h postinfection and found soybean immune genes, including a few previously unknown genes that are associated with resistance. Our study highlights that fine‐tuning in Avr gene expression impacts the compatibility of plant disease and provides clues to improve crop resistance in disease control management.  相似文献   

20.
Cilia are present on most vertebrate cells and play a central role in development, growth, and homeostasis. Thus, cilia dysfunction can manifest into an array of diseases, collectively termed ciliopathies, affecting millions of lives worldwide. Yet, our understanding of the gene regulatory networks that control cilia assembly and functions remain incomplete. With the advances in next‐generation sequencing technologies, we can now rapidly predict pathogenic variants from hundreds of ciliopathy patients. While the pace of candidate gene discovery is exciting, most of these genes have never been previously implicated in cilia assembly or function. This makes assigning the disease causality difficult. This review discusses how Xenopus, a genetically tractable and high‐throughput vertebrate model, has played a central role in identifying, validating, and characterizing candidate ciliopathy genes. The review is focused on multiciliated cells (MCCs) and diseases associated with MCC dysfunction. MCCs harbor multiple motile cilia on their apical surface to generate extracellular fluid flow inside the airway, the brain ventricles, and the oviduct. In Xenopus, these cells are external and present on the embryonic epidermal epithelia, facilitating candidate genes analysis in MCC development in vivo. The ability to introduce patient variants to study their effects on disease progression makes Xenopus a powerful model to improve our understanding of the underlying disease mechanisms and explain the patient phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号