首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为一种快速高效的体外蛋白合成手段,无细胞蛋白表达体系(Cell-free Protein Synthesis,CFPS)一直以来就被广泛应用于基础生物学领域的研究。与传统的基于细胞的体内表达体系相比,CFPS突破了细胞的生理限制,其可调控性强、对毒性蛋白的耐受力高,使得许多很难在体内合成的复杂蛋白在体外顺利表达。近年来随着研究人员不断对CFPS进行优化,通过简化制备工艺、开发价格低廉的能量再生系统、稳定底物供应、促进蛋白正确折叠等方式,成功研发出生产效率高、成本低廉、反应体积大的表达体系。凭借其高通量和大规模的蛋白表达优势,CFPS为解决生物制药领域中面临的难题提供了新的解决思路,并成功地应用于高通量药物筛选、大规模生产重组蛋白药物、个体化定制肿瘤疫苗等领域,显示出其在生物制药领域的重要应用潜力。  相似文献   

2.
Semiochemicals are natural products occurring in plants, bacteria or animals which function as carriers of a special message. Depending on the mode of function of the semiochemicals, they are divided into pheromones that trigger a response in members of the same species and allelochemicals (kairomones, allomones) that act between individuals of different species. Semiochemicals are very important compounds that influence the behavior of plants and animals and their adaption to a changing environment. As their importance for plants, animals and the ecological system itself is huge, the synthetic access to these chemicals, their precursors and derivatives is of high interest. Beyond novel strategies for the construction of semiochemical skeletons, combinatorial methods have been implemented to synthesize medium-sized and large-sized libraries that enable diverse modifications of the active compounds. These combinatorial approaches allow the screening for more active compounds and they elucidate the mode of action of the semiochemical or of the biological target. This review summarizes the state of the art procedures for the synthesis of important skeletons appearing in semiochemicals and gives special synthetic procedures for selected examples if the procedure is suitable for a general transfer to the synthesis of derivatives. The synthetic examples are given in the context of known active phytochemicals and their function that allows an evaluation of the given procedures with respect to the fulfillment of the common structural requirements (the structural diversity and flexibility) and the importance for the regulation of biological systems. Parts of this review were given in a lecture at the BioCom 12 in Cadiz, 2012.  相似文献   

3.
Rare disease registries (RDRs) are an essential tool to improve knowledge and monitor interventions for rare diseases. If designed appropriately, patient and disease related information captured within them can become the cornerstone for effective diagnosis and new therapies. Surprisingly however, registries possess a diverse range of functionality, operate in different, often-times incompatible, software environments and serve various, and sometimes incongruous, purposes. Given the ambitious goals of the International Rare Diseases Research Consortium (IRDiRC) by 2020 and beyond, RDRs must be designed with the agility to evolve and efficiently interoperate in an ever changing rare disease landscape, as well as to cater for rapid changes in Information Communication Technologies. In this paper, we contend that RDR requirements will also evolve in response to a number of factors such as changing disease definitions and diagnostic criteria, the requirement to integrate patient/disease information from advances in either biotechnology and/or phenotypying approaches, as well as the need to adapt dynamically to security and privacy concerns. We dispel a number of myths in RDR development, outline key criteria for robust and sustainable RDR implementation and introduce the concept of a RDR Checklist to guide future RDR development.  相似文献   

4.
The living cell is an ever changing, responsive, and adaptive environment where proteins play key roles in all processes and functions. While the scientific community focused for a long time on the decoding of the information required for protein synthesis, little attention was paid to the mechanisms by which proteins are removed from the cell. We now realize that the timely and proper activity of proteins is regulated to a large extent by their degradation; that cellular coping with different physiological cues and stress conditions depends on different catabolic pathways; and that many pathological states result from improper protein breakdown.There are two major protein degradation systems in all eukaryotic cells—the ubiquitin- proteasome and the autophagy-lysosome. The two systems are highly regulated, and—via degradation of a broad array of proteins—are responsible for maintenance of protein homeostasis and adaptation to environmental changes. Each is comprised of numerous components responsible for its coordinated function, and together they encompass a considerable fraction of the entire genome.In this review, we shall discuss the common and diverse characteristics of the ubiquitin-proteasome system (UPS) and autophagy—their substructure, mechanisms of action, function and concerted regulation under varying pathophysiological conditions.  相似文献   

5.
6.
Biological regulatory systems require the specific organization of proteins into multicomponent complexes. Two hybrid systems have been used to identify novel components of signaling networks based on interactions with defined partner proteins. An important issue in the use of two-hybrid systems has been the degree to which interacting proteins distinguish their biological partner from evolutionarily conserved related proteins and the degree to which observed interactions are specific. We adapted the basic two-hybrid strategy to create a novel dual bait system designed to allow single-step screening of libraries for proteins that interact with protein 1 of interest, fused to DNA binding domain A (LexA), but do not interact with protein 2, fused to DNA binding domain B (lambda cI). Using the selective interactions of Ras and Krev-1(Rap1A) with Raf, RalGDS, and Krit1 as a model, we systematically compared LexA- and cI-fused baits and reporters. The LexA and cI baitr reporter systems are well matched for level of bait expression and sensitivity range for interaction detection and allow effective isolation of specifically interacting protein pairs against a nonspecific background. These reagents should prove useful to refine the selectivity of library screens, to reduce the isolation of false positives in such screens, and to perform directed analyses of sequence elements governing the interaction of a single protein with multiple partners.  相似文献   

7.
Regulated expression systems are invaluable for studying gene function, offer advantages of dosage-dependent and temporally defined gene expression, and limit possible clonal variation when toxic or pleiotropic genes are overexpressed. Previously, establishment of inducible expression systems, such as tetracycline- and ecdysone-inducible systems, required assessment of the inducible characteristics of individual clones by tedious luciferase assays. Taking advantage of a green fluorescent protein (GFP) reporter controlled by tetracycline- or ecdysone-responsive element and fluorescence-activated cell sorting, we propose a simple and efficient strategy to select highly inducible cell lines according to their fluorescence profiles after transiently transfecting the candidate cell pools with a surrogate GFP reporter. We have demonstrated that tetracycline- and ecdysone-inducible systems could be set up in Madin-Darby canine kidney and HEK-293 cells by employing this selection scheme. Importantly, this dual regulatory expression system is applied in studying the complex interplay between two Ras-related small GTPases, Cdc42 and Rac1, on detachment-induced apoptosis. Furthermore, establishment of two tightly regulated expression systems in one target cell line could be of great advantage for dissecting small GTPase Rac1-transduced signaling pathways by using global gene expression approaches such as proteomic assays. fluorescence-activated cell sorting; green fluorescent protein; Ras small GTPases; anoikis  相似文献   

8.
Bell L  Chowdhary R  Liu JS  Niu X  Zhang J 《PloS one》2011,6(6):e21474
A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein-protein interactions, protein/gene regulations, protein-small molecule interactions, protein-GO relationships, protein-pathway relationships, and pathway-disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses--the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs.  相似文献   

9.
In recent years, numerous biocomputational tools have been designed to extract functional and evolutionary information from multiple sequence alignments (MSAs) of proteins and genes. Most biologists working actively on the characterization of proteins from a single or family perspective use the MSA analysis to retrieve valuable information about amino acid conservation and the functional role of residues in query protein(s). In MSAs, adjustment of alignment parameters is a key point to improve the quality of MSA output. However, this issue is frequently underestimated and/or misunderstood by scientists and there is no in-depth knowledge available in this field. This brief review focuses on biocomputational approaches complementary to MSA to help distinguish functional residues in protein families. These additional analyses involve issues ranging from phylogenetic to statistical, which address the detection of amino acids pivotal for protein function at any level. In recent years, a large number of tools has been designed for this very purpose. Using some of these relevant, useful tools, we have designed a practical pipeline to perform in silico studies with a view to improving the characterization of family proteins and their functional residues. This review-guide aims to present biologists a set of specially designed tools to study proteins. These tools are user-friendly as they use web servers or easy-to-handle applications. Such criteria are essential for this review as most of the biologists (experimentalists) working in this field are unfamiliar with these biocomputational analysis approaches.  相似文献   

10.
Type IV secretion systems are macromolecular assemblies in the cell envelopes of bacteria that function in macromolecular translocation. Structural biology approaches have provided insights into the interaction of core complex components, but information about proteins that undergo transient interactions with membrane components has not been forthcoming. We have pursued an unbiased approach using peptide arrays and phage display to identify interaction partners and interaction domains of type IV secretion system assembly factor VirB8. These approaches identified the globular domain from the VirB5 protein to interact with VirB8. This interaction was confirmed in cross-linking, pull-down, and fluorescence resonance energy transfer (FRET)-based interaction assays. In addition, using phage display analysis, we identified different regions of VirB6 as potential interaction partners of VirB8. Using a FRET-based interaction assay, we provide the first direct experimental evidence of the interaction of a VirB6 periplasmic domain with VirB8. These results will allow us to conduct directed structural biological work and structure-function analyses aimed at defining the molecular details and biological significance of these interactions with VirB8 in the future.  相似文献   

11.
A limitation of transfection of malaria parasites is the availability of only a low number of positive selectable markers for selection of transformed mutants. This is exacerbated for the rodent parasite Plasmodium berghei as selection of mutants is performed in vivo in laboratory rodents. We here report the development and application of a negative selection system based upon transgenic expression of a bifunctional protein (yFCU) combining yeast cytosine deaminase and uridyl phosphoribosyl transferase (UPRT) activity in P.berghei followed by in vivo selection with the prodrug 5-fluorocytosine (5-FC). The combination of yfcu and a positive selectable marker was used to first achieve positive selection of mutant parasites with a disrupted gene in a conventional manner. Thereafter through negative selection using 5-FC, mutants were selected where the disrupted gene had been restored to its original configuration as a result of the excision of the selectable markers from the genome through homologous recombination. This procedure was carried out for a Plasmodium gene (p48/45) encoding a protein involved in fertilization, the function of which had been previously implied through gene disruption alone. Such reversible recombination can therefore be employed for both the rapid analysis of the phenotype by targeted disruption of a gene and further associate phenotype and function by genotype restoration through the use of a single plasmid and a single positive selectable marker. Furthermore the negative selection system may also be adapted to facilitate other procedures such as 'Hit and Run' and 'vector recycling' which in principle will allow unlimited manipulation of a single parasite clone. This is the first demonstration of the general use of yFCU in combination with a positive selectable marker in reverse genetics approaches and it should be possible to adapt its use to many other biological systems.  相似文献   

12.
13.
The bio-nanocapsule (BNC) is our concept of artificial hollow nanoparticles that have been designed and produced through biotechnological procedures. We proposed an empty virus-like particle, which consists of a recombinant L envelope protein of hepatitis B virus (HBV) and a lipid derived from the host cell, as an engineered BNC. Although this BNC was first developed as an immunogen of hepatitis B vaccine, the pre-S1 region in N-terminus of L envelope protein confers hepatocyte specific infectivity of HBV on the BNC. This recombinant BNC is now being developed as a novel platform of drug delivery system (DDS) vector for selective delivery.  相似文献   

14.
While cryo-electron microscopy (cryo-EM) has revolutionized the structure determination of supramolecular protein complexes that are refractory to structure determination by X-ray crystallography, structure determination by cryo-EM can nonetheless be complicated by excessive conformational flexibility or structural heterogeneity resulting from weak or transient protein–protein association. Since such transient complexes are often critical for function, specialized approaches must be employed for the determination of meaningful structure–function relationships. Here, we outline examples in which transient protein–protein interactions have been visualized successfully by cryo-EM in the biosynthesis of fatty acids, polyketides, and terpenes. These studies demonstrate the utility of chemical crosslinking to stabilize transient protein–protein complexes for cryo-EM structural analysis, as well as the use of partial signal subtraction and localized reconstruction to extract useful structural information out of cryo-EM data collected from inherently dynamic systems. While these approaches do not always yield atomic resolution insights on protein–protein interactions, they nonetheless enable direct experimental observation of complexes in assembly-line biosynthesis that would otherwise be too fleeting for structural analysis.  相似文献   

15.
Systems biology in drug discovery   总被引:15,自引:0,他引:15  
The hope of the rapid translation of 'genes to drugs' has foundered on the reality that disease biology is complex, and that drug development must be driven by insights into biological responses. Systems biology aims to describe and to understand the operation of complex biological systems and ultimately to develop predictive models of human disease. Although meaningful molecular level models of human cell and tissue function are a distant goal, systems biology efforts are already influencing drug discovery. Large-scale gene, protein and metabolite measurements ('omics') dramatically accelerate hypothesis generation and testing in disease models. Computer simulations integrating knowledge of organ and system-level responses help prioritize targets and design clinical trials. Automation of complex primary human cell-based assay systems designed to capture emergent properties can now integrate a broad range of disease-relevant human biology into the drug discovery process, informing target and compound validation, lead optimization, and clinical indication selection. These systems biology approaches promise to improve decision making in pharmaceutical development.  相似文献   

16.
MOTIVATION: Pairwise experimental perturbation is increasingly used to probe gene and protein function because these studies offer powerful insight into the activity and regulation of biological systems. Symmetric two-dimensional datasets, such as pairwise genetic interactions are amenable to an optimally designed measurement procedure because of the equivalence of cases and conditions where fewer experimental measurements may be required to extract the underlying structure. RESULTS: We show that optimal experimental design can provide improvements in efficiency when collecting data in an iterative manner. We develop a method built on a statistical clustering model for symmetric data and the Fisher information uncertainty estimates, and we also provide simple heuristic approaches that have comparable performance. Using yeast epistatic miniarrays as an example, we show that correct assignment of the major subnetworks could be achieved with <50% of the measurements in the complete dataset. Optimization is likely to become critical as pairwise functional studies extend to more complex mammalian systems where all by all experiments are currently intractable.  相似文献   

17.
18.
The analysis of proteins in biological membranes forms a major challenge in proteomics. Despite continuous improvements and the development of more sensitive analytical methods, the analysis of membrane proteins has always been hampered by their hydrophobic properties and relatively low abundance. In this review, we describe recent successful strategies that have led to in-depth analyses of the membrane proteome. To facilitate membrane proteome analysis, it is essential that biochemical enrichment procedures are combined with special analytical workflows that are all optimized to cope with hydrophobic polypeptides. These include techniques for protein solubilization, and also well-matched developments in protein separation and protein digestion procedures. Finally, we discuss approaches to target membrane–protein complexes and lipid–protein interactions, as such approaches offer unique insights into function and architecture of cellular membranes.  相似文献   

19.
Protein complexes represent major functional units for the execution of biological processes. Systematic affinity purification coupled with mass spectrometry (AP‐MS) yielded a wealth of information on the compendium of protein complexes expressed in Saccharomyces cerevisiae. However, global AP‐MS analysis of human protein complexes is hampered by the low throughput, sensitivity and data robustness of existing procedures, which limit its application for systems biology research. Here, we address these limitations by a novel integrated method, which we applied and benchmarked for the human protein phosphatase 2A system. We identified a total of 197 protein interactions with high reproducibility, showing the coexistence of distinct classes of phosphatase complexes that are linked to proteins implicated in mitosis, cell signalling, DNA damage control and more. These results show that the presented analytical process will substantially advance throughput and reproducibility in future systematic AP‐MS studies on human protein complexes.  相似文献   

20.
Using a newly synthesized gibberellin analog containing an acetoxymethyl group (GA(3)-AM) and its binding proteins, we developed an efficient chemically inducible dimerization (CID) system that is completely orthogonal to existing rapamycin-mediated protein dimerization. Combining the two systems should allow applications that have been difficult or impossible with only one CID system. By using both chemical inputs (rapamycin and GA(3)-AM), we designed and synthesized Boolean logic gates in living mammalian cells. These gates produced output signals such as fluorescence and membrane ruffling on a timescale of seconds, substantially faster than earlier intracellular logic gates. The use of two orthogonal dimerization systems in the same cell also allows for finer modulation of protein perturbations than is possible with a single dimerizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号