首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eleven new sphingosine 1-phosphate receptor 2 (S1PR2) ligands were synthesized by modifying lead compound N-(2,6-dichloropyridin-4-yl)-2-(4-isopropyl-1,3-dimethyl-1H-pyrazolo[3,4-b]pyridin-6-yl)hydrazine-1-carboxamide (JTE-013) and their binding affinities toward S1PRs were determined in vitro using [32P]S1P and cell membranes expressing recombinant human S1PRs. Among these ligands, 35a (IC50?=?29.1?±?2.6?nM) and 35b (IC50?=?56.5?±?4.0?nM) exhibit binding potency toward S1PR2 comparable to JTE-013 (IC50?=?58.4?±?7.4?nM) with good selectivity for S1PR2 over the other S1PRs (IC50?>?1000?nM). Further optimization of these analogues may identify additional and more potent and selective compounds targeting S1PR2.  相似文献   

2.
Recently, diverse kinase inhibitors were reported having interaction with BRD4. It provided a strategy for developing a new structural framework for the next-generation BRD4-selective inhibitors. Starting from PLK1 kinase inhibitor BI-2536, we designed 18 compounds by modifying dihydropteridine core. Compound 23 showed potent BRD4 inhibitory activities with IC50 of 79 nM and no inhibitory activities for PLK1. Cell antiproliferation assay was performed and potent inhibitory activity against MV4;11 with IC50 of 1.53 μM. Cell apoptosis and western blotting indicated compound 23 induced apoptosis by down-regulating c-Myc. These novel selective BRD4 inhibitors provided new lead compounds for further drug development.  相似文献   

3.
With the goal of discovering more selective anti-inflammatory drugs, than COX inhibitors, to attenuate prostaglandin signaling, a fragment-based screen of hematopoietic prostaglandin D synthase was performed. The 76 crystallographic hits were sorted into similar groups, with the 3-cyano-quinoline 1a (FP IC50?=?220,000?nM, LE?=?0.43) being a potent member of the 6,6-fused heterocyclic cluster. Employing SAR insights gained from structural comparisons of other H-PGDS fragment binding mode clusters, the initial hit 1a was converted into the 70-fold more potent quinoline 1d (IC50?=?3,100?nM, LE?=?0.49). A systematic substitution of the amine moiety of 1d, utilizing structural information and array chemistry, with modifications to improve inhibitor stability, resulted in the identification of the 300-fold more active H-PGDS inhibitor tool compound 1bv (IC50?=?9.9?nM, LE?=?0.42). This selective inhibitor exhibited good murine pharmacokinetics, dose-dependently attenuated PGD2 production in a mast cell degranulation assay and should be suitable to further explore H-PGDS biology.  相似文献   

4.
In our effort to explore the potential of ACC1-selective inhibitor as in vivo probe molecule, a series of 1,3-benzoxazole derivatives was synthesized. Previously, we reported a series of novel bicyclic and monocyclic ACC1-selective inhibitors. Among them, compound 1a exhibited highly potent cellular activity (acetate uptake IC50 = 0.76 nM) as well as promising in vivo PD efficacy. However, compound 1a caused severe body weight reduction in repeated dose administration in the mouse model. Since 1a showed potent inhibitory activity against mouse ACC1 as well as strong inhibition of mouse ACC2, we further examined a series of 1a analogues in order to reduce undesirable body weight change. The replacement of acetamide moiety with ureido moiety dramatically improved selectivity of mouse ACC1 against ACC2. In addition, analogue 1b displayed favorable bioavailability in mouse cassette dosing PK study, hence in vivo PD studies were also carried out. Oral administration of 1b significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at doses of more than 30 mg/kg. Furthermore, compound 1b showed significant antitumor efficacy in 786-O xenograft mice at an oral dose of 30 mg/kg (T/C = 0.5%). Accordingly, our novel potent ACC1-selective inhibitor represents a set of useful orally-available research tools, as well as potential therapeutic agents particularly in terms of new cancer therapies.  相似文献   

5.
A new class of 2(1H)-pyrimidinone derivatives was identified as potential EGFR T790M inhibitors against TKI-resistant NSCLC. These novel compounds inhibited the EGFR T790M kinase activity at concentrations in the range of 85.3 to 519.9 nM. In particular, compound 7e exhibited the strongest activity against both EGFRWT (IC50 = 96.9 nM) and EGFRT790M (IC50 = 85.3 nM) kinases in the cells. Compared with inhibitor 7e, compound 7b displayed enhanced antiproliferative activity against gefitinib-resistant H1975 cells harboring the EGFR T790M mutation. In addition, compound 7b also has low toxicity against the normal human liver cells LO2, with an IC50 of 11.1 µM. Moreover, both the AO/EB and DAPI staining assays also demonstrated the inhibitory efficacy of 7b against the resistant H1975 cells. This contribution provides a new scaffold 2(1H)-pyrimidinone as potential EGFR T790M inhibitor against drug-resistant NSCLC.  相似文献   

6.
A series of phthalide alkyl tertiary amine derivatives were designed, synthesized and evaluated as potential multi-target agents against Alzheimer’s disease (AD). The results indicated that almost all the compounds displayed significant AChE inhibitory and selective activities. Besides, most of the derivatives exhibited increased self-induced Aβ1-42 aggregation inhibitory activity compared to the lead compound dl-NBP, and some compounds also exerted good antioxidant activity. Specifically, compound I-8 showed the highest inhibitory potency toward AChE (IC50 = 2.66 nM), which was significantly better than Donepezil (IC50 = 26.4 nM). Moreover, molecular docking studies revealed that compound I-8 could bind to both the catalytic active site and peripheral anionic site of AChE. Furthermore, compound I-8 displayed excellent BBB permeability in vitro. Importantly, the step-down passive avoidance test indicated that I-8 significantly reversed scopolamine-induced memory deficit in mice. Collectively, these results suggested that I-8 might be a potent and selective AChE inhibitor for further anti-AD drug development.  相似文献   

7.
Excessive phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) plays a major role in the dysregulation of mRNA translation and the activation of tumor cell signaling. eIF4E is exclusively phosphorylated by mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) on Ser209. So, MNK1/2 inhibitors could decrease the level of p-eIF4E and regulate tumor-associated signaling pathways. A series of pyridone–aminal derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against hematologic cancer cell lines. In particular, compound 42i (MNK1 IC50?=?7.0?nM; MNK2 IC50?=?6.1?nM) proved to be the most potent compound against TMD-8 cell line with IC50 value of 0.91?μM. Furthermore, 42i could block the phosphorylation level of eIF4E in CT-26 cell line, and 42i inhibited the tumor growth of CT-26 allograft model significantly. These results indicated that compound 42i was a promising MNK1/2 inhibitor for the potent treatment of colon cancer.  相似文献   

8.
New potent mTORC1/mTORC2 dual inhibitors, 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives, were obtained by optimizing functional groups on our previously reported PI3Kα inhibitor. All the target compounds were synthesized and structural optimization on the structure of the lead compound based on cytotoxic activity. The results showed that some of the target compounds exhibited moderate to high cytotoxic activity against cell line U87MG and PC-3. The activities against mTOR kinase were investigated and the compound 12q showed excellent activity with an IC50 value of 54 nM in the same level of the positive control BEZ235 with IC50 value of 55 nM under the same test conditions. The western blot and cell cycle results demonstrate that compound 12q is a candidate as an mTORC1/mTORC2 dual-target inhibitor. The theoretical calculations were also performed to better understanding the binding modes of the compound 12q in the mTOR active site.  相似文献   

9.
ROS1 protein is a receptor tyrosine kinase that has been reported mainly in meningiomas and astrocytomas, and until now, there is no selective inhibitor for this kinase. In this study, we illustrate for the synthesis of a highly potent and selective inhibitor for ROS1 kinase. The synthesized compound 1 was tested initially at a single dose concentration of 10 μM over 45 different kinases. At this concentration, a 94% inhibition of the enzymatic activity of ROS1 kinase was observed, while the inhibition in activity was below 30% in all of the other kinases. The pyrazole compound 1 was further tested in a 10-dose IC50 mode and showed an IC50 value of 199 nM for ROS1 kinase. The compound 1 can be used as a promising lead for the development of new selective inhibitors for ROS1 kinase, and it may open the way for new selective therapeutics for astrocytomas.  相似文献   

10.
Sexual development in malaria parasites involves multiple signal transduction pathways mediated by reversible protein phosphorylation. Here, we functionally characterised a protein phosphatase, Ser/Thr protein phosphatase 5 (PbPP5), during sexual development of the rodent malaria parasite Plasmodium berghei. The recombinant protein phosphatase domain displayed obvious protein phosphatase activity and was sensitive to PP1/PP2A inhibitors including cantharidic acid (IC50 = 122.2 nM), cantharidin (IC50 = 74.3 nM), endothall (IC50 = 365.5 nM) and okadaic acid (IC50 = 1.3 nM). PbPP5 was expressed in both blood stages and ookinetes with more prominent expression during sexual development. PbPP5 was localised in the cytoplasm of the parasite and highly concentrated beneath the parasite plasma membrane in free merozoites and ookinetes. Targeted deletion of the pbpp5 gene had no influence on asexual blood-stage parasite multiplication or the survival curve of the infected hosts. However, male gamete formation and fertility were severely affected, resulting in almost complete blockade of ookinete conversion and oocyst development in the Δpbpp5 lines. This sexual development defect was rescued by crossing Δpbpp5 with the female defective Δpbs47 parasite line, but not with the male defective Δpbs48/45 line, thus confirming the essential function of the pbpp5 gene in male gamete fertility. Furthermore, the aforementioned PP1/PP2A inhibitors all had inhibitory effects on exflagellation of male gametocytes and ookinete conversion. In particular, endothall, a selective inhibitor of PP2A, completely blocked exflagellation and ookinete conversion at ~548.3 nM. This study elucidated an essential function of PbPP5 during male gamete development and fertility.  相似文献   

11.
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles  相似文献   

12.
The initial focus on characterizing novel pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as DPP-4 inhibitors, led to a potent and selective inhibitor compound b2. This ligand exhibits potent in vitro DPP-4 inhibitory activity (IC50: 80?nM), while maintaining other key cellular parameters such as high selectivity, low cytotoxicity and good cell viability. Subsequent optimization of b2 based on docking analysis and structure-based drug design knowledge resulted in d1. Compound d1 has nearly 2-fold increase of inhibitory activity (IC50: 49?nM) and over 1000-fold selectivity against DPP-8 and DPP-9. Further in vivo IPGTT assays showed that compound b2 effectively reduce glucose excursion by 34% at the dose of 10?mg/kg in diabetic mice. Herein we report the optimization and design of a potent and highly selective series of pyrazolo[1,5-a]pyrimidin-7(4H)-one DPP-4 inhibitors.  相似文献   

13.
In the present study, new (1,3,4-thiadiazol-2-yl)benzene-1,3-diol based compounds have been synthesized and their potential anticholinesterases properties have been investigated using the modified of Ellman’s spectrophotometric method. The compounds were obtained by the reaction of hydrazides or thiosemicarbazides with aryl-modified sulfinylbis[(2,4-dihydroxyphenyl)methanethione]s. Their chemical structures were elucidated by IR, 1H-NMR, 13C-NMR and EI-MS spectral data and elemental analyses. Most of the compounds acted as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors in vitro, with IC50 values ranging from >500 to 0.053 μM and from >500 to 0.105 μM, respectively. The most potent compound 9 (IC50 = 0.053 μM) proved to be selective toward AChE, exhibiting selectivity ratios versus BuChE of ca. 950. The kinetic studies showed that it is a mixed-type of AChE inhibitor. Another compound (2) was active against both enzymes with IC50 values in the low nM range. The structure-activity relationships (SARs) of the compounds under consideration were discussed.  相似文献   

14.
As a continuous research for discovery of new COX-2 inhibitors, we present the simple chemical synthesis, in vitro biological screening, and molecular docking study of 1H-pyrrole-2,5-dione derivatives. New synthetic compounds were evaluated for the inhibitory activities on LPS-induced PGE2 production in RAW 264.7 macrophage cells as well as the COX-1 and COX-2 inhibitory potency. Among them, compound 9d (MPO-0029) was identified as more potent and selective COX-2 inhibitor [PGE2 IC50 = 8.7 nM, COX-2 IC50 = 6.0 nM; COX-2 selectivity index (SI) = >168] than celecoxib. Molecular docking experiments were further performed against COX-2 and COX-1 isozymes to determine their probable binding models. Results of molecular docking studies revealed that compound 9d (MPO-0029) has stronger binding interaction with COX-2 than with COX-1 isozyme, and provided successfully complementary theoretical support for the obtained experimental biological data.  相似文献   

15.
The modulation of 11β-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11β-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11β-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC50 values in the 100 nM range. These compounds are also highly selective 11β-HSD1 inhibitors with no activity against 11β-HSD2 and 17β-HSD1. Compound 15 (IC50 = 114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC50 = 280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification.  相似文献   

16.
A series of thieno[2,3-d]pyrimidine-based hydroxamic acid hybrids was designed and synthesised as multitarget anti-cancer agents, through incorporating the pharmacophore of EGFR, VEGFR2 into the inhibitory functionality of HDAC6. Three compounds (12c, 15b and 20b) were promising hits, whereas (12c) exhibited potent VEGFR2 inhibition (IC50=185 nM), potent EGFR inhibition (IC50=1.14 µM), and mild HDAC6 inhibition (23% inhibition). Moreover, compound (15c) was the most potent dual inhibitor among all the synthesised compounds, as it exhibited potent EGFR and VEGFR2 inhibition (IC50=19 nM) and (IC50=5.58 µM), respectively. While compounds (20d) and (7c) displayed nanomolar selective kinase inhibition with EGFR IC50= 68 nM and VEGFR2 IC50= 191 nM, respectively. All of the synthesised compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumour cell lines. Additionally, molecular docking studies and ADMET studies were carried out to gain further insight into their binding mode and predict the pharmacokinetic properties of all the synthesised inhibitors.  相似文献   

17.
In the present study, a series of fifteen α-tetralone (3,4-dihydro-2H-naphthalen-1-one) derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The α-tetralone derivatives examined are structurally related to a series of chromone (1-benzopyran-4-one) derivatives which has previously been shown to act as MAO-B inhibitors. The results document that the α-tetralones are highly potent MAO-B inhibitors with all compounds exhibiting IC50 values in the nanomolar range (<78 nM). Although most compounds are selective inhibitors of MAO-B, the α-tetralones are also potent MAO-A inhibitors with ten compounds exhibiting IC50 values in the nanomolar range (<792 nM). The most potent MAO-B inhibitor, 6-(3-iodobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 4.5 nM with a 287-fold selectivity for MAO-B over the MAO-A isoform, while the most potent MAO-A inhibitor, 6-(3-cyanobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 24 nM with a 3.25-fold selectivity for MAO-A. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C6 position of the α-tetralone moiety is a requirement for MAO-A and MAO-B inhibition, and that a benzyloxy substituent on this position is more favourable for MAO-A inhibition than phenylethoxy and phenylpropoxy substitution. For MAO-B inhibition, alkyl and halogen substituents on the meta and para positions of the benzyloxy ring enhance inhibitory potency. It may be concluded that α-tetralone derivatives are promising leads for design of therapies for Parkinson’s disease and depression.  相似文献   

18.
Synthesis and biological evaluation of benzocyclobutane-C-glycosides as potent and orally active SGLT1/SGLT2 dual inhibitors are described. Compound 19 showed high inhibitory potency at SGLT1 (IC50?=?45?nM), and excellent potency at SGLT2 (IC50?=?1?nM). It also displayed excellent PK profiles in mice, rats, dogs and monkeys (F?=?78–107%). In SD rats, compound 19 treatments significantly reduced blood glucose levels in a dose-dependent manner. In ZDF rats, compound 19 displayed anti-hyperglycemic effect up to 24?h. Therefore, compound 19 may serve as valuable pharmacological tool, and potential use as a treatment for metabolic syndrome.  相似文献   

19.
Indoleamine 2,3-dioxygenase 1 (IDO1) plays a vital role in tumor immune escape and has emerged as a promising target for cancer immunotherapy. In this study, a novel series of 2,5-dimethylfuran-3-carboxylic acid derivatives were designed, synthesized and evaluated for inhibitory activities against IDO1, and their structure-activity relationship was investigated. Among these, compound 19a exhibited excellent IDO1 inhibitory activity (HeLa cellular IC50?=?4.0?nM, THP-1 cellular IC50?=?4.6?nM). Further molecular docking studies revealed that the compound 19a formed a coordinate bond with the heme iron through the carboxylic acid moiety. These results indicate that compound 19a is a potential IDO1 inhibitor for further investigation.  相似文献   

20.
Twenty eight new aryloxybenzene analogues were synthesized and their in vitro binding potencies toward S1PR2 were determined using a [32P]S1P competitive binding assay. Out of these new analogues, three compounds, 28c (IC50 = 29.9 ± 3.9 nM), 28e (IC50 = 14.6 ± 1.5 nM), and 28g (IC50 = 38.5 ± 6.3 nM) exhibited high binding potency toward S1PR2 and high selectivity over the other four receptor subtypes (S1PR1, 3, 4, and 5; IC50 > 1000 nM). Each of the three potent compounds 28c, 28e, and 28g contains a fluorine atom that will allow to develop F-18 labeled PET radiotracers for imaging S1PR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号