首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown the importance of monitoring microenvironmental conditions (temperature, relative humidity) experienced by the tablet bed during a pan coating process, thereby necessitating the need to understand how various process parameters influence these microenvironmental conditions. The process parameters studied in this work include exhaust air temperature, spray rate, inlet airflow rate, gun-to-bed distance, coating suspension percent solids, and atomization and pattern air pressure. Each of these process parameters was found to have an impact on the tablet bed relative humidity (RH), as measured using PyroButton data logging devices. A higher tablet bed RH was obtained with an increase in spray rate and atomization air pressure and with a decrease in exhaust air temperature, inlet airflow rate, gun-to-bed distance, suspension percent solids, and pattern air pressure. Based on this work, it can be concluded that the tablet bed thermodynamic conditions are a cumulative effect of the various process conditions. A strong correlation between the tablet bed RH and the frequency of tablet coating defect (logo bridging) was established, with increasing RH resulting in a higher percent of logo bridging events.  相似文献   

2.
In this study, a new concept for particle size prediction during the fluid bed granulation is presented. Using the process measurements data obtained from a design of experimental study, predictive partial least squares models were developed for spraying and drying phases. Measured and calculated process parameters from an instrumented fluid bed granulation environment were used as explaining factors, whereas an in-line particle size data determined by spatial filtering technique were used as response. Modeling was carried out by testing all possible combinations of two to six process parameters (factors) of the total of 41 parameters. Eleven batches were used for model development and four batches for model testing. The selected models predicted particle size (d 50) well, especially during the spraying phase (Q 2 = 0.86). While the measured in-line d 50 data were markedly influenced by different process failures, e.g., impaired fluidization activity, the predicted data remained more consistent. This introduced concept can be applied in fluid bed granulation processes if the granulation environment is soundly instrumented and if reliable real-time particle size data from the design of experiment batches are retrieved for the model development.  相似文献   

3.
The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.  相似文献   

4.
Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler.  相似文献   

5.
The aim of the present work was to develop a PAT strategy for the supervision of hot melt coating processes. Optical fibers were placed at various positions in the process chamber of a fluid bed device. Experiments were performed to determine the most suitable position for in-line process monitoring, taking into account such requirements as a good signal to noise ratio, the mitigation of dead zones, the ability to monitor the product over the entire process, and reproducibility. The experimental evidence suggested that the position at medium fluid bed height, looking towards the center, i.e., normal to particle movement, proved to be the most reliable position. In this study, the advantages of multipoint monitoring are shown, and an in-line-implementation was created. This enabled the real-time supervision of the process, including the fast detection of inhomogeneities and disturbances in the process chamber, and the compensation of sensor malfunction. In addition, a model for estimating the particle size distribution via NIR was successfully created. This ensures that the quality of the product and the endpoint of the coating process can be determined correctly.  相似文献   

6.
To evaluate the photoinhibition of colonial and unicellular cells of Microcystis aeruginosa under natural conditions, the maximum and effective quantum yields of photosystem II were measured from variable chlorophyll a fluorescence in samples from Lake Taihu during a summer bloom from June 19 to 21, 2006. Diurnal changes in the photoinhibition of Microcystis cells incubated immediately below the surface in clear bottles for 30 min and in situ samples under natural conditions were measured. At solar noon during the three days, the mean values of maximum quantum yield (F v/F m) and effective quantum yield (ΔF/F m′) for unicellular cells (F v/F m = 0.15, ΔF/F m′ = 0.10) were lower than those for colonial cells (F v/F m = 0.25, ΔF/F m′ = 0.15). For in situ samples, the values of F v/F m and ΔF/F m′ for colonial cells at solar noon on the three days (F v/F m 0.30, 0.25, 0.29; ΔF/F m′ 0.24, 0.21, 0.22) were also higher than those of unicellular cells (F v/F m 0.26, 0.18, 0.25; ΔF/F m′ 0.15, 0.11, 0.14). The results indicate that colony formation has a protective effect on Microcystis cells by reducing the occurrence of photoinhibition under high light intensities.  相似文献   

7.
Plants of the crassulacean acid metabolism (CAM) species Plectranthus marrubioides (Lamiaceae) were subjected to short- and long-term changes in air humidity in controlled-environment experiments. Stomata of well-watered individuals of this all-cell leaf-succulent taxon responded directly, quickly and reversibly to variations of the water vapour gradient between leaf and air (Δw). Mean night-time leaf conductance to water vapour decreased curvilinearly with increasing Δw but linearly with lowered relative air humidity. Stomatal response was generally independent of the prevailing temperature and was not linked to CO2 uptake rates. Therefore, net night-time carbon gain, nocturnal malic acid accumulation and, thus, relative carbon recycling were not influenced by changes in air humidity in the temperature range tested. Mean nocturnal molar water use efficiency, however, decreased with decreasing air humidity because of the increased transpirational water loss. If watering was repeatedly withheld for several days during the experiments, employing a temperature regime of 35/30°C day and night, stomatal conductance became low enough to inhibit CO2 uptake, but only at the highest Δw. The results suggest that drought stress was necessary to increase responsiveness of plants to the point where CAM was also inhibited by decreases in air humidity.  相似文献   

8.
Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm?1, 7515.24 to 7108.33 cm?1, and 5257.00 to 5098.87 cm?1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm?1was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.  相似文献   

9.
The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 26−1(IV) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box–Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process.  相似文献   

10.
The purpose of this research was to create a calibration model based on near-infrared (NIR) spectroscopy data obtained during a small-scale coating process to predict in-line the coating layer thickness of tablets coated in a side-vented drum coater. The developed setup for the small-scale coating process consisted of a rotating plate with 20 tablets molds that pass a spraying unit, a heating unit, and an in-line NIR spectroscopy probe during one rotation. High-density polyethylene (HDPE) was compressed to flat-faced tablets, and these were coated with a sustained release coating suspension containing Kollicoat IR and Kollicoat SR 30D. The film thickness of these tablets was determined for each tablet individually with a digital micrometer. A calibration model of predicted film thickness versus real-film thickness using PLS regression was developed. This model was tested against in-line NIR data obtained from a coating drum process, in which biconvex HDPE tablets were film-coated with the same film-coating suspension. The model predicted a final coating thickness of 240 μm, while the measured average thickness (n = 100 tablets) was 210 μm. Taking into account the use of a different setup and differently shaped tablets, it was possible to predict the coating thickness with accuracy comparable to the one of the digital micrometer. Thus, the small-scale rotating plate system was found to be an efficient means of preparing calibration model for a tablet-coating drum process.  相似文献   

11.
Summary Using a direct Monte Carlo simulation, population growth of helper T-cells (N H) and viral cells (N v) is studied for an immune response model with an enhanced spatial inter-cellular interaction relevant to HIV as a function of viral mutation. In the absence of cellular mobility (P mob=0), the helper T-cells grow nonmonotonically before reaching saturation and the viral population grows monotonically before reaching a constant equilibrium. Cellular mobility (P mob=1) enhances the viral growth and reduces the stimulative T-cell growth. Below a mutation threshold (P c), the steady-state density of helper T-cell (p H) is larger than that of the Virus (p v); the density difference Δp o(=pV−pH) remains a constant at P mob=1 while −Δp o→0 as P mutP c at P mob=0. Above the mutation threshold, the difference Δp o in cell density, grows with ΔP=P mutP c monotonically: ΔP o ∞ (ΔP)β ≃ with β≈0.574±0.016 in absence of mobility, while Δp o≈6(ΔP) with P mob=1.  相似文献   

12.
The envelope of the human immunodeficiency virus (HIV) is the main target for neutralizing antibodies. We report the cloning, purification, and characterization of two recombinant forms of the envelope glycoprotein gp125 from a primary HIV-2SBL-6669 isolate. Both constructs were truncated at the N- and C-termini, and in the gp125Δv1v2 construct the variable V1 and V2 loops were deleted. The recombinant glycoproteins were stably expressed in Chinese hamster ovarian cells, producing soluble gp125 and gp125Δv1v2 at molecular weights of 74.2 and 56.9 kDa, respectively, and were purified from cell culture supernatants in a single step using Galanthus nivalis lectin chromatography. Circular dichroism analysis indicated a similar secondary structure for gp125 and gp125Δv1v2, and both proteins were recognized by HIV-2 serum antibodies in surface plasmon resonance assays. The high yield and purity of these constructs makes them suitable for structural and functional analyses, as well as vaccine studies.  相似文献   

13.
The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T A), soil temperature (T S), relative humidity (h), wind speed (v) and soil water content (Ψ) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T A, T S, and Ψ increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Ψ. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.  相似文献   

14.
The purpose of this work was to develop a practical scale-up model for a solvent-based pan-coating process. Practical scale-up rules to determine the key parameters (pan load, pan speed, spray rate, air flow) required to control the process are proposed. The proposed scale-up rules are based on a macroscopic evaluation of the coating process. Implementation of these rules does not require complex experimentation or prediction of model parameters. The proposed scale-up rules were tested by conducting coating scale-up and scale-down experiments on 24-inch and 52-inch Vector Hi-coaters. The data demonstrate that using these rules led to similar cumulative drug release profiles (f2≫50; and P Analysis of Variance [P ANOVA]≫0.05 for cumulative percentage of drug released after 12 hours [Cum 12] from tablets made at 24- and 52-inch scales. Membrane characteristics such as opacity and roughness were also similar across the 2 scales. The effects of the key process variables on coat weight uniformity and membrane characteristics were also studied. Pan speed was found to be the most significant factor related to coating uniformity. Spray droplet size was found to affect the membrane roughness significantly, whereas opacity was affected by the drying capacity.  相似文献   

15.
Pellet coating is traditionally carried out using the Wurster coater. This study investigated the feasibility of pellet coating in a newly developed coater built with a unique airflow system, the Supercell™ coater (GEA Pharma Systems, UK). A full factorial design study was carried out to evaluate the influences of the spray rate of the coating dispersion, batch size of the pellet load, pellet size fraction and plenum pressure of the fluidizing air on the color coating of pellets in the Supercell™ coater. Results showed that pellets could be successfully coated using the Supercell™ coater. Higher plenum pressures and lower spray rates were found to minimize pellet agglomeration during coating. Although coating efficiencies were comparable amongst the different pellet size fractions, larger batch sizes of pellets were coated with higher efficiencies. Process optimization was carried out for each pellet size fraction and a large batch size (120 g) in combination with a high plenum pressure (1,500 mm WC) were deemed optimal. Optimal spray rates differed according to pellet size fraction and a lower spray rate was required for smaller pellets. Pellet flow patterns observed during coating were dependent on the pressure drop across the fluidized load. A ‘swirling’ pellet flow pattern was generally observed at coating conditions which led to optimal outcomes.KEY WORDS: fluid bed, fluidization, pellet coating, pellet flow patterns, pressure drop, process optimization, Supercell™ coater  相似文献   

16.
Combined molecular docking, molecular dynamics (MD) and density functional theory (DFT) studies have been employed to study catalysis of the Diels-Alder reaction by a modified lipase. Six variants of the versatile enzyme Candida Antarctica lipase B (CALB) have been rationally engineered in silico based on the specific characteristics of the pericyclic addition. A kinetic analysis reveals that hydrogen bond stabilization of the transition state and substrate binding are key components of the catalytic process. In the case of substrate binding, which has the greater potential for optimization, both binding strength and positioning of the substrates are important for catalytic efficiency. The binding strength is determined by hydrophobic interactions and can be tuned by careful selection of solvent and substrates. The MD simulations show that substrate positioning is sensitive to cavity shape and size, and can be controlled by a few rational mutations. The well-documented S105A mutation is essential to enable sufficient space in the vicinity of the oxyanion hole. Moreover, bulky residues on the edge of the active site hinders the formation of a sandwich-like nearattack conformer (NAC), and the I189A mutation is needed to obtain enough space above the face of the α,β-double bond on the dienophile. The double mutant S105A/I189A performs quite well for two of three dienophiles. Based on binding constants and NAC energies obtained from MD simulations combined with activation energies from DFT computations, relative catalytic rates (v cat /v uncat ) of up to 103 are predicted.  相似文献   

17.
Summary α,β-Dehydroamino acids are useful peptide modifiers. However, their stereoelectronic properties still remain insufficiently recognized. Based on FTIR experiments in the range ofv s(N-H), AI, AII andv s(Cα=Cβ) and ab initio calculations with B3LYP/6–31G*, we studied the solution conformational preferences and the amide electron density perturbation of Ac-ΔXaa-NHMe, where ΔXaa=ΔAla, (E)-ΔAbu, (Z)-ΔAbu, (Z)-ΔLeu, (Z)-ΔPhe and ΔVal. Each of these dehydroamides adopts a C5 structure, which in Ac-ΔAla-NHMe is fully extended and accompanied by the strong C5 hydrogen bond. Interaction with bond Cα=Cβ lessens the amidic resonance within the flanking amide groups. TheN-terminal C=O bond is noticeably shorter, both amide bonds are longer than the corresponding bonds in the saturated entities and the N-terminal amide system is distorted. Ac-ΔAla-NHMe constitutes an exception. ItsC-terminal amide bond is shorter than the standard one and both amide systems are ideally planar. Ac-(E)-ΔAbu-NHMe shares stereoelectronic features with both Ac-ΔAla-NHMe and (Z)-dehydroamides.  相似文献   

18.
Summary The liquid and solids mixing in fluidized bed bio-reactors containing particles with a density only slightly higher than water (1100 kg/m3) is generally consistent with the results found in previous studies for reactors with particles of higher density. The liquid mixing can be described by an axial dispersion model for a large variety of conditions while the solids follow the streamlines of the liquid. In the presence of a gas phase the degree of mixing of both the liquid and the solid phase increased. This effect became larger with increasing reactor diameter. In the extrapolation of laboratory data of three phase fluidized bed bio-reactors to pilot plant systems this effect should be taken into account. The liquid and solids mixing may have a substantial effect on overall conversion rates and on possible microbial stratification in the reactor.Nomenclature Bo Bodenstein number v L/D (-) - D r diameter of the fluidized bed reactor (m) - D 1 Dispersion coefficient of the liquid phase (m2/s) - D g dispersion coefficient of the solid phase (m2/s) - E(in) normalized dye concentration function entering the ideally mixed tank reactor (-) - E(t) normalized dye concentration function as measured (-) - L length of the axial dispersed reactor (m) - t time after dye injection (s) - t m time constant for microbial selection (s) - t s solid mixing time constant (s) - t time interval in which a particle migrates within the bed (s) - v t superficial gas velocity (m/s) - v g superficial liquid velocity (m/s) - z migration distance of a particle in the bed (m) - 1 in situ growth rate of a dominant organism (s-1) - 2 in situ growth rate of a recessive organism (s-1) - average residence time in the axial dispersed reactor (s) - t average residence time in the ideally mixed tank reactor (s)  相似文献   

19.
A procedure is developed to calculate red blood cell and phospholipid vesicle shapes within the bilayer couple model of the membrane. The membrane is assumed to consist of two laterally incompressible leaflets which are in close contact but unconnected. Shapes are determined by minimizing the membrane bending energy at a given volume of a cell (V), given average membrane area (A) and given difference of the areas of two leaflets (A). Different classes of shapes exist in parts of the v/a phase diagram, where v and a are the volume and the leaflet area difference relative to the sphere with area A. The limiting shapes are composed of sections of spheres with only two values allowed for their radii. Two low energy axisymmetrical classes, which include discocyte and stomatocyte shapes are studied and their phase diagrams are analyzed. For v=0.6, the discocyte is the lowest energy shape, which transforms by decreasing a continuously into a stomatocyte. The spontaneous membrane curvature (C 0) and compressibility of membrane leaflest can be incorporated into the model.A model, where A is free and C 0 determines the shapes at given V and A, is also studied. In this case, by decreasing C 0, a discocyte transforms discontinuously into an almost closed stomatocyte.  相似文献   

20.
The photosynthetic performance of a microalgal biofilm colonizing a building facade was investigated between February and July 2004, with an emphasis on changing water availability and air humidity. The fluorimetric measurements of the quantum efficiency (F v/F m) indicated diurnal activity patterns. At most sampling dates the algal biofilm photosynthesized particularly in the morning and substantially less in the afternoon. As long as liquid water was present, the microalgae exhibited at least some degree of photosynthesis. However, F v/F m values never exceeded 0.4, pointing to slight photoinhibition or damage of the cells. Dried cells without photosynthesis could recover within minutes after artificial moistening.Three microalgal strains were isolated from aeroterrestrial biofilms and established as unialgal cultures. Their photosynthesis and growth were characterized under different air humidities and temperatures. Photosynthesis and growth of strain ROS 55/3 (Stichococcus sp.) showed similar patterns with decreasing relative air humidity. Positive growth and optimum photosynthesis were recorded at 100% relative air humidity. At air humidities below 93%, both processes were strongly inhibited. All studied strains grew between 1 and 30°C with optimum rates at 20–23°C, indicating eurythermal features.The data indicate that liquid water or 100% air humidity are the prerequisite for optimum photosynthesis and growth of aeroterrestrial microalgae. However, when dried and consequently inactive, these microorganisms can recover quickly if water is suddenly available, e.g., after rain events. These physiological capabilities explain well the ecological success of aeroterrestrial microalgae in occupying many man-made substrata such as building facades and roof tiles in urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号