首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A tetrazolium technique is presented that permits the study of ATP: Creatine phosphotransferase, or creatine kinase, in fixed skeletal muscle tissue sections, within the limits imposed by the properties of the chosen ditetrazole, nitro blue tatrazolium. There is a variation in creatine kinase activity between the muscle fibres. Those with high creatine kinase activity also have high succinate dehydrogenase activity.List of Abbreviations ADP Adenosine-5-diphosphate - ATP adenosine-5-triphosphate - CK creatine kinase - G-6-P glucose-6-phosphate - G-6-P-DH glucose-6-phosphate dehydrogenase - HK hexokinase - NADP nicotinamide adenine dinucleotide phosphate - NBT nitro blue tetrazolium - PMS phenazine methosulphate - SDH succinate dehydrogenase  相似文献   

2.
A soluble protein phosphatase from the promastigote form of the parasitic protozoanLeishmania donovani was partially purified using Sephadex G-100, DEAE-cellulose and again Sephadex G-100 columns. The partially purified enzyme showed a native molecular weight of about 42, 000 in both Sephadex G-100 and sucrose density gradient centrifugation. The sedimentation constant, stokes radius and frictional ratio were found to be 3.43S, 2.8 nm and 1.20 respectively. The enzyme preferentially utilized phosphohistone as the best exogenous substrate. Mg2+ ions were essential for enzyme activity; among other metal ions Mn2+ can replace Mg2+ to a certain extent whereas Ca2+, Co2+ and Zn2+ could not substitute for Mg2+. The pH optimum of the enzyme was 6.5–7.5 and the temperature optimum 37°C. The apparent Km for phosphohistone was 7.14 M. ATP, ADP, inorganic phosphate and pyrophosphate had inhibitory effect on the enzyme activity whereas no inhibition was observed with sodium tartrate and okadaic acid. These results suggest thatL. donovani promastigotes possess a protein phosphatase which has similar characteristics with the mammalian protein phosphatase 2C.Abbreviations PMSF phenylmethylsulfonyl fluoride - DTT dithiothreitol - TCA trichloroacetic acid - BSA bovine serum albumin - EDTA ethylenediamine tetraacetic acid - ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - EGTA Ethyleneglycol-bis-(-aminoethyl ether) N,N,N,N-tetraacetic acid  相似文献   

3.
Summary Extracts of fasted rat diaphragms, previously treated with or without insulin were assayed for glycogen synthase, protein kinase and cyclic [3H]-AMP binding. Treatment with insulin produced an elevation in the % of glycogen synthase I and a concurrent decrease in cyclic AMP-dependent protein kinase activity and cyclic [3H]-AMP binding. Analysis of extracts by disc gel electrophoresis demonstrated the inhibition of cyclic [3H]-AMP binding to involve the Type I protein kinase holoenzyme. Inhibition of protein kinase activity was most apparent in the presence of 0.2 µM cyclic AMP, with enzymatic activity of the insulin-treated extracts typically 60–65% of control. Higher assay concentrations diminished the difference between control and insulin-treated extracts and concentrations greater than 20 µm abolished it.The inhibition of cyclic AMP-dependent protein kinase activity after insulin was a transient and labile phenomenon. The effect was independent of ATP concentration in the assay, but was sensitive to the pH of tissue extraction, requiring a pH of 7.0 to 8.4 to be observed.Insulin-mediated inhibition of protein kinase activity was reversed upon preincubation of extracts at 0–2°. Relatively concentrated homogenates (<4 µl buffer/mg tissue) yielded extracts which exhibited little or no inhibition of protein kinase activity compared to extracts prepared from more dilute (6–10 µl/mg) homogenates. A model for the inhibition of the cyclic-AMP dependent protein kinase by an insulin-generated inhibitor which becomes directly associated with the Type 1 holoenzyme is proposed.Abbreviations cyclic AMP (cAMP) Adenosine 3,5-monophosphate - Tricine N-Tris (Hydroxy-methyl) methyl glycine - G-6-P glucose-6-phosphate - MES 2-[N-morpholino]ethane sulfonic acid A preliminary report was communicated to the 61st meeting of the F.A.S.E.B., April, 1977.  相似文献   

4.
Pyruvate kinase (ATP: pyruvate phosphotransferase (EC 2.7.1.40) was partially purified from both autotrophically and heterotrophycally grown Paracoccus denitrificans. The organism grown under heterotrophic conditions contains four times more pyruvate kinase than under autotrophic conditions. The enzyme isolated from both sources exhibited sigmoidal kinetics for both phosphoenolpyruvate (PEP) and ADP. The apparent M m for ADP and PEP in the autotrophic enzyme were 0.63 mM ADP and 0.25 mM PEP. The effect of several low molecular weight metabolites on the pyruvate kinase activity was investigated. Ribose-5-phosphate, glucose-6-phosphate and AMP stimulated the reaction at low ADP levels; this stimulation was brought about by an alteration in the apparent K m for ADP. The pyruvate kinases differ in their response to adenine nucleotides, but both preparations seem to be under adenylate control. The results are discussed in relation to the role of pyruvate kinase as a regulatory enzyme in P. denitrificans grown under both autotrophic and heterotrophic conditions.Non-Common Abbreviations PEP phosphoenolpyruvate - R-5-P ribose-5-phosphate - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate  相似文献   

5.
Particulate fractions of Thiobacillus denitrificans catalyse the phosphorylation of ADP to ATP during the oxidation of various inorganic sulphur compounds or NADH via an electron transport chain. On the other hand, a soluble cell-free fraction synthesized ATP from APS and inorganic phosphate.The production of ATP was verified either by the firefly luciferin-luciferase enzyme system or by the incorporation of 32Pi into ATP. During the oxidation of sulphide, sulphite and NADH the production of ATP from ADP by particulate fractions is inhibited by compounds that inhibit electron transfer and by uncouplers of oxidative phosphorylation. However, these compounds had little effect on the production of ATP from AMP during the oxidation of sulphite by the soluble fraction. NADH was the most effective electron donor for oxidative phosphorylation. The soluble fraction contained high activities of ATP sulphurylase, inorganic pyrophosphatase and adenylate kinase but ADP sulphurylase activity was relatively low. The effects of inhibitors on ATP production from APS and Pi are compared with those on adenylate kinase and ATP sulphurylase.Abbreviations APS adenosine-5-phosphosulphate - DNP 2,4-dinitrophenol - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide  相似文献   

6.
In phosphorylase assays in crude yeast extracts with glucose-1-phosphate (G-1-P) as substrate, 25–30% of the Pi-liberating activity could not be inhibited by antibodies against yeast phosphorylase and were attributed to the action of phosphatases. During phosphorylase preparation from baker's yeast (Saccharomyces cerevisiae), a phosphatase, molecular weight 45000±5000, with high specificity for G-1-P, pH-optimum 5.6, was isolated which appeared to be responsible for the interference. It did not hydrolyze other glycolytic intermediates, pyrophosphate or adenylates. No activation by Mg2+ or inhibition by (+)-tartrate, and only 40% inhibition by 50 mM F- were observed, 5,5 dithiobis-(nitrobenzoic acid) (10mM) inactivated the enzyme completely. Its affinity for G-1-P was very low (K m=40 mM). Consequently, it mainly interfered with the phosphorylase assay in the amylose synthesizing reaction, in which high G-1-P-concentrations have to be used. For phosphorylase assays in crude extracts, measurement of the phosphorolytic activity is recommended, in which the concentration of G-1-P is kept sufficiently low.Abbreviations G-1-P Glucose-1-phosphate - (NbS)2 5,5 dithiobis-(2-nitrobenzoic acid) - SDS Sodium dodecylsulfate  相似文献   

7.
Andreas Renz  Mark Stitt 《Planta》1993,190(2):166-175
The substrate dependence and product inhibition of three different fructokinases and three different hexokinases from growing potato (Solanum tuberosum L.) tubers was investigated. The tubers contained three specific fructokinases (FK1, FK2, FK3) which had a high affinity for fructose K m=64, 90 and 100 (M) and effectively no activity with glucose or other hexose sugars. The affinity for ATP (K m=26, 25 and 240 M) was at least tenfold higher than for other nucleoside triphosphates. All three fructokinases showed product inhibition by high fructose (K i=5.7, 6.0 and 21 mM) and were also inhibited by ADP competitively to ATP. Sensitivity to ADP was increased in the presence of high fructose, or fructose-6-phosphate. In certain conditions, the K i (ADP) was about threefold below the K m (ATP). All three fructokinase were also inhibited by fructose-6-phosphate acting non-competitively to fructose (K i=1.3 mM for FK2). FK1 and FK2 showed very similar kinetic properties whereas FK3, which is only present at low activities in the tuber but high activities in the leaf, had a generally lower affinity for ATP, and lower sensitivity to inhibition by ADP and fructose. The tuber also contained three hexokinases (HK1, HK2, HK3) which had a high affinity for glucose (K m=41, 130 and 35 M) and mannose but a poor affinity for fructose (K m=11, 22 and 9 mM). All three hexokinases had a tenfold higher affinity for ATP (K m=90, 280 and 560 M) than for other nucleoside triphosphates. HK1 and HK2 were both inhibited by ADP (K i=40 and 108 M) acting competitively to ATP. HK1, but not HK2, was inhibited by glucose-6-phosphate, which acted non-competitively to glucose (K i=4.1 mM). HK1 and HK2 differed, in that HK1 had a narrower pH optimum, a higher affinity for its substrate, and showed inhibition by glucose-6-phosphate. The relevance of these properties for the regulation of hexose metabolism in vivo is discussed.Abbreviations FK fructokinase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - HK hexokinase - NTP nucleoside triphosphate - Pi inorganic phosphate - UDPGlc uridine-5-diphosphoglucose This work was supported by the Deutsche Froschungsgemeinschaft (SFB 137). We are grateful to Professor E. Beck (Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, FRG) for providing laboratory facilities.  相似文献   

8.
Summary The incorporation of [35S]-sulphate was followed into washed-cell suspensions of Nitrobacter agilis. Thus, bound sulphate, sulphite, sulphide, cysteine, glutathione, homocysteine, methionine and taurine were detected in the ethanol-soluble fraction as well as in the residual hydrolysed fraction. The reaction between thiol groups and N-ethylmaleimide has been successfully used to stabilize the SH-compounds in cell extracts, and the derivatives thus obtained were separated by paper chromatography.A soluble enzyme system catalyzing the reduction of sulphate to sulphite has been prepared. As a result of DEAE-cellulose-11 column chromatography, the enzyme complex was cleaved into two protein bands, one containing ATP-sulphurylase and the other APS-kinase and PAPS-reductase. The last two enzymes were further purified by DEAE-sephadex and Sephadex G-150 column chromatography. At pH 7.6 the enzymes show maximal activity in the presence of ATP and an ATP-generating system (creatine phosphate and creatine phosphokinase), APS, NADP+, a NADP+-reducing system (glucose-6-phosphate and a glucose-6-phosphate dehydrogenase) and MgCl2. Addition of small amounts of 2,3-dimercaptopropan-1-ol (BAL) to the buffers stabilized the enzymes and enabled them to be dialyzed for 16 h, without loss of activity. Anaerobic conditions are required for maximal activity.The optimum concentration of various cofactors for enzyme activity has been determined. The K m values are as follows: ATP, 1.3×10-3 M; APS, 1.6×10-4 M and NADP+, 1.8×10-3 M. The molecular weight of the APS-kinase and PAPS-reductase complex is about 280000. The PCMB inhibition of the two enzymes is reversed by adding GSH, L-cysteine and Cleland's reagent.Abbreviations APS adenosine 5-phosphosulphate - PAPS 3-phosphoadenosine 5-phosphosulphate - PCMB p-chloromercuribenzoate - NEM N-ethylmaleimide - PPO 2,5-diphenyloxazole - POPOP 1,4-bis-(5-phenyloxazole-2)-benzene; Cleland's reagent, dithiothreitol  相似文献   

9.
In the present work we characterized the ecto-ATP diphosphohydrolase activity of the trypanosomatid parasite Herpetomonas muscarum muscarum. This parasite hydrolyzed ATP at a rate of 15.52 nmol Pi/mg protein/min and this activity reached a maximum at pH 7.5. Classical inhibitors of acid phosphatases, such as sodium orthovanadate (NaVO3), sodium fluoride (NaF), and ammonium molybdate presented no effect on this activity. MgCl2, ZnCl2, and MnCl2 stimulated the ATP hydrolysis by H. m. muscarum. The ecto-ATPase activity was insensitive to oligomycin and sodium azide, two inhibitors of mitochondrial Mg-ATPase, bafilomycin A1, a V-ATPase inhibitor, ouabain, a Na++K+-ATPase inhibitor and to levamizole, an inhibitor of alkaline phosphatase. An extracellular impermeant inhibitor 4,4-diisothiocyanostylbene 2,2-disulfonic acid (DIDS) and a inhibitor of some ecto-ATPases, suramin, which is also a competitive antagonist of P2-purinergic receptors, promoted a great inhibition on the ATP hydrolysis. This enzyme is able to hydrolysis ATP, ADP, UTP, and UDP, but not GTP, GDP, CTP, or CDP. ADP inhibited the enzymatic activity in a concentration dependent manner, reaching 70% inhibition. Received: 17 September 2002 / Accepted: 19 November 2002  相似文献   

10.
APS-kinase (ATP: adenylylsulphate 3-phosphotransferase, EC 2.7.1.25) has been purified from the alga Chlamydomonas reinhardii, strain CW 15 by means of chromatofocussing and affinity chromatography. The isolated protein showed an apparent molecular mass of 44,000 upon sodium dodecylsulphate polyacrylamide gel electrophoresis. The transfer of phosphate groups from ATP onto APS required a pH of 6.8, the presence of Mg2+ ions and a reducing thiol. Its catalytical activity was destroyed by sulphhydryl group inhibitors (phenyl-mercuri compounds, dithiopyridine) and alkylating reagents.The purified enzyme attained a V max of 360 pkat under optimal reaction conditions declining to v limit of 260 pkat in the presence of excess substrate APS. This sensitivity towards changes in substrate concentrations was parallelled by a high affinity and specificity: apparent K m APS: 2 · 10-6 mol · l-1, and K m ATP: 7 · 10-6 mol · l-1. The enzyme was found specific for ATP, d-ATP and CTP, while UTP, ITP and GTP showed marginal activity. The Hill coefficients suggested 4 binding sites for APS and 1 for ATP. Excessive APS resulted in a negative slope indicating 3 inhibiting sites of the substrate.Abbreviations APS Adenosine 5-phosphosulphate - dATP 2-deoxyadenosine 5-triphosphate - p-CMB p-chloromercuribenzoate - DTE dithioerythritol - DTT dithiothreitol - -MSH -mercaptoethanol - PAPS 3-phosphoadenosine 5-phosphosulphate - PAP 3-phosphoadenosine 5-phosphate - SDS sodium dodecyl sulphate This work is part of a dissertation submitted by H. G. J., Bochum 1982  相似文献   

11.
Summary Various substrate mixtures have been tested for the histochemical demonstration of phosphorylase in tissue blocks. These studies indicate that phosphorylase activity, cytological detail and localization of the reaction product are optimally demonstrated when tissue blocks are incubated for one hour or longer in a medium containing high concentrations of G-1-P, ATP and PVP.Abbreviations AMP adenosine-5-monophosphate - ATP adenosine-5-triphosphate - EDTA ethylenediamine-tetraacetic acid - G-1-P glucose-1-phosphate - PPa active phosphorylase - PPb inactive phosphorylase - PVP polyvinyl pyrrolidone  相似文献   

12.
Rhodobacter sulfidophilus, R. capsulatus, R. sphaeroides, Rhodospirillum rubrum, Rhodopseudomonas palustris, R. viridis and Rhodocyclus gelatinosus were found to be able to synthesize adenylylsulfate and 3-phosphoadenylylsulfate from sulfate and ATP. The presence of ATP sulfurylase was proven for the soluble protein fractions of all these species. ADP sulfurylase was not found. ATP sulfurylase was purified from R. sulfidophilus. Its molecular weight was 290,000. The enzyme is stabilized by magnesium ions and elevated salinities. The optimal pH was 8.0, activity was found between pH 6.8 and 9.4. The enzyme is inactivated at temperatures above 40°C. Kinetic studies resulted in K m(ATP)=0.26 mM, K m(sulfate)=0.33 mM; K i(AMP)-2.1 mM, K i(ADP)=1.15 mM; K i(APS)=0.8 M; K i(sulfite)=0.4. mM; K i(sulfide)=0.66mM.Uncommon abbreviations APS adenylylsulfate - PAPS 3-phosphoadenylylsulfate - PEP phosphoenolpyruvate Dedicated to Professor Gerhart Drews on the occasion of his 60th birthday  相似文献   

13.
Data from the literature have demonstrated that synaptosomal preparations from various sources can hydrolyze externally added ATP. Various authors characterized this activity as an ecto-ATPase. In the present report, we demonstrate that synaptosomal preparations obtained from the cerebral cortex of rats show ATPase activity that could not be dissociated from ADPase activity, suggesting that an ATP-diphosphohydrolase is involved in ATP and ADP hydrolysis. Furthermore, the ATP and ADP hydrolysis could not be attributed to associations of enzymes that could mimic an ATP-diphosphohydrolase because none of the following activities were detected in our assay conditions inorganic pyrophosphatase, adenylate kinase, or nonspecific phosphatases. A possible association between an ATPase and an ADPase was excluded on the basis of both the kinetics and much additional data on inhibitors, ion dependence, pH, etc. The present results demonstrate that in synaptosomal preparations from cerebral cortex an ATP-diphosphohydrolase is involved, at least in part, in ATP and ADP hydrolysis.Abbreviations DCCD dicyclohexylcarboiimide - EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Pi inorganic phosphate Enzymes ATP diphosphohydrolase, Apyrase (EC 3.6.1.5) - ATPase ATP phosphohydrolase (EC 3.6.1.3) 5-nucleotidase (EC 3.1.3.5) Hexokinase (EC 2.7.1.1) Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) Adenylate kinase (EC 2.7.4.3) Inorganic pyrophosphatase (EC 3.6.1.1) - ATP pyrophosphohydrolase (EC 3.6.1.8) - LDH lactate dehydrogenase (EC 1.1.1.27) - SDH succinate dehydrogenase (EC 1.3.1.6) - ACHE acethylcholinesterase (EC 3.1.1.7) - G-6-Pase glucose-6-phosphatase (EC 3.1.3.9) - NADPH cytoehrome c oxidoreductase (NCR) (EC 1.6.2.4)  相似文献   

14.
Purified ribulose-bisphosphate carboxylase (EC 4.1.1.39) was strongly and equally inhibited either by ADP or GDP and to a lesser extent by IDP. AMP or ATP exerted little effect on activity. Inhibition by the nucleotide diphosphates was competitive with respect to RuBP and non-competitive with respect to CO2 and Mg2+, respectively. Treatment of the enzyme with urea or guanidine-HCl resulted in rapid loss of activity that was not restored by dialysis even in the presence of Mg2+ and cysteine. Sodium dodecyl sulfate electrophoresis of 8.0 M urea treated enzyme revealed the presence of a fast-moving (small) sub-unit with molecular weight 14150 and a slower moving (large) sub-unit with molecular weight 68000. Examination of native enzyme by sodium dodecyl sulfate electrophoresis gave sub-units of 13700 and 55500 respectively. The amino acid content standardized to phenylalanine was essentially similar to that from other sources. Arrhenius plots showed a break at 29°C with an E a of 12.34 kcal per mole for the steeper part of the curve and a H of 11.43 kcal per mole while for the less steep region, the E a was 1.04 kcal per mole and the H 1.92 kcal per mole.Abbreviations ADP adenosine-5-diphosphate - AMP adenosine-5-monophosphate - ATP adenosine-5-triphosphate - CDP cytidine-5-diphosphate - CMP cytidine-5-monophosphate - CTP cytidine-5-triphosphate - FDP fructose-1,6-diphosphate - F6P fructose-6-phosphate - GDP guanosine-5-diphosphate - GMP guanosine-5-monophosphate - G6P glucose-6-phosphate - GTP guanosine-5-triphosphate - IDP inosine-5-diphosphate - IMP inosine-5-monophosphate - PEP phosphoenolpyruvate - 6PG 6-phosphogluconate - R1P ribose-1-phosphate - R5P ribose-5-phosphate - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecyl sulfate - TDP thymidine-5-diphosphate - TMP thymidine-5-monophosphate - TTP thymidine-5-triphosphate - UDP uridine-5-diphosphate - UMP uridine-5-monophosphate - UTP uridine-5-triphosphate  相似文献   

15.
Anabaena cylindrica grown in steady state continuous culture has an extractable ATP pool, measured on the basis of the luciferin-luciferase assay of 165±35 nmoles ATP mg chla -1. This pool is maintained by a dynamic balance between the rate of ATP synthesis and the rate of ATP utilization. Phosphorylating mechanisms which can maintain the pool in the short term are total photophosphorylation, cyclic photophosphorylation and oxidative phosphorylation. The alga can maintain its ATP pool by switching rapidly from one of these phosphorylating mechanisms to another depending on the environmental conditions. At each switch-over there is a transient drop in the ATP pool for a few seconds. On switching to conditions where only substrate level phosphorylation operates, the ATP pool falls immediately, but takes several hours to recover. The apparent rates of ATP synthesis by total photophosphorylation and by cyclic photophosphorylation are both much higher (210±30 and 250±13 moles ATP mg chla -1 h-1 respectively) than the apparent rate of ATP synthesis by oxidative phosphorylation (22±3 moles ATP mg chla -1 h-1). In long term experiments the ATP pool is maintained when total photophosphorylation is operating. It cannot be maintained in the long term by cyclic photophosphorylation alone in the absence of photosystem II activity or endogenous carbon compounds, or by oxidative phosphorylation in the absence of endogenous carbon compounds. Measurements of ATP, ADP and AMP show that the total pool of adenylates is similar in the light and in the dark in the short term. There is only limited production of ATP under dark anaerobic conditions when glycolysis and substrate phosphorylation can operate which suggests that these processes are of limited significance in providing ATP in Anabaena cylindrica.Abbreviations ADP adenosine 5-diphosphate - AMP adenosine 5-monophosphate - ATP adenosine 5-triphosphate - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)1,1-dimethyl urea - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PEP phosphoenolpyruvate  相似文献   

16.
In cell-free extracts of Acinetobacter strain 210A polyphosphate: AMP phosphotransferase and adenylate kinase activity was measured. Polyphosphate glucokinase and polyphosphate dependent NAD kinase were not detected. The specific activity of polyphosphate: AMP phosphotransferase was found to be 43 nmol · min-1 · mg-1 protein in presence of 1 mmol · l-1 AMP. The adenylate kinase reaction had an equilibrium constant ([ATP] [AMP] [ADP]-2) of 0.7, an activity of 54 nmol · min-1 · mg-1 protein, and was almost completely inhibited by 0.3 mM P1,P5-di(adenosine-5)-pentaphosphate. ATP was formed through the combined action of polyphosphate: AMP phosphotransferase and adenylate kinase in cell-free extracts from bacterial polyphosphate and from chemically prepared polyphosphate (Graham's salt). A spectrophotometric method for the continuous monitoring of polyphosphate: AMP phosphotransferase is also presented.Abbreviations Ap5A P1,P5-di(adenosine-5)-pentaphosphate - G6P-DH D-glucose-6-phosphate dehydrogenase - HK hexokinase - AEC adenylate energy charge - U units (converting 1 mol · min-1)  相似文献   

17.
The binding of TNP-ATP (2 or 3-O-(2,4,6-trinitrophenyl)-ATP) to cytochrome c oxidase (COX) from bovine heart and liver and to the two-subunit COX of Paracoccus denitrificans was measured by its change of fluorescence. Three binding sites, two with high (dissociation constant Kd = 0.2 µM) and one with lower affinity (Kd = 0.9 µM), were found at COX from bovine heart and liver, while the Paracoccus enzyme showed only one binding site (Kd = 3.6 µM). The binding of [35S]ATPaS was measured by equilibrium dialysis and revealed seven binding sites at the heart enzyme (Kd = 7.5 µM) and six at the liver enzyme (Kd = 12 µM). The Paracoccus enzyme had only one binding site (Kd = 16 µM). The effect of variable intraliposomal ATP/ADP ratios, but at constant total concentration of [ATP + ADP] = 5 mM, on the H+/e- stoichiometry of reconstituted COX from bovine heart and liver were studied. Above 98% ATP the H+/e- stoichiometry of the heart enzyme decreased to about half of the value measured at 100% ATP. In contrast, the H+/e- stoichiometry of the liver enzyme was not influenced by the ATP/ADP ratio. It is suggested that high intramitochondrial ATP/ADP ratios, corresponding to low cellular work load, will decrease the efficiency of energy transduction and result in elevated thermogenesis for the maintenance of body temperature. (Mol Cell Biochem 174: 131–135, 1997)  相似文献   

18.
Human term placenta contains an ATP diphosphohydrolase activity which hydrolyses ATP to ADP and inorganic phosphate and ADP to AMP and a second mole of inorganic phosphate. The activity has a pH optimum between 8.0 and 8.5. Magnesium or calcium ions are required for maximum activity. Other nucleoside phosphates, p-nitrophenyl phosphate or sodium pyrophosphate, are not hydrolysed. The activity is not due to ATPases, or to myokinase, as determined by the use of inhibitors. NaF and NaN3 were found to inhibit strongly the activity thus identifying it as an ATP diphosphohydrolase.A sensitive enzymatic assay for measurement of AMP, one of the products of the reaction, was established, based on the strong inhibition of muscle fructose 1,6-biphosphatase by AMP. The range of the assay was 0.05–0.8 µM AMP. ATP diphosphohydrolase was found to have a rate of AMP production from ADP twice the rate from ATP. Under the same conditions, the assay for Pi release, on the other hand, gave velocities similar to each other for the two substrates.The activity appears to be identical to the ADP-hydrolysing activity in placenta reported by others.Abbreviations Ap5A P1 - P5-di(adenosine-5) Pentaphosphate - ATP-DPH ATP Diphosphohydrolase - DCCD N,N Dicyclohexycarbodiimide - Fru-P2ase Fructose 1,6-biphosphatase - SDS Sodium Dodecyl Sulfate - TLC Thin Layer Chromatography  相似文献   

19.
Summary cAMP independent glycogen synthase kinase and phosvitin kinase activity was purified from the 180 000 × g supernatant of human polymorphonuclear leukocytes by ammonium sulphate precipitation and phosphocellulose chromatography. The cAMP independent glycogen synthase kinase eluted from the phosphocellulose at 0.54 m NaCl (peak A) separate from the major phosvitin kinase eluting at 0.68 m NaCl (peak B). The kinase activity of both peaks tended to form aggregates, but in the presence of 0.6 m NaCl, the peak B enzyme had Mr 250 000, 7.2S and the peak A enzyme Mr 38 000, 3.8S. The ratio between synthase kinase and phosvitin kinase activity in peak A was 1:3.2 and in peak B 1:31.4. In addition the kinase activities differed with respect to sensitivity to temperature, ionic strength and CaCl2. It is suggested that the peak A enzyme represents the cAMP independent glycogen synthase kinase of leukocytes, whereas the peak B enzyme is a phosvitin kinase, which is insignificantly contaminated with some synthase kinase (peak A) and contains a separate, second synthase kinase.Synthase kinase had K m app 4.2 m for muscle glycogen synthease I and K m app 45 m for ATP. GTP was a poor substrate. The activity was not influenced by cyclic nucleotides, Ca2+, or glucose-6-P. Synthase I from muscle and leukocytes was phosphorylated to a ratio of independence of less than 0.05.Abbreviations cAMP adenosine cyclic 3:5-monophosphate - DTT dithiothreitol - EGTA ethylene glycol-bis-(-amino-ethylether)-N,N-tetraacetic acid - PMSF phenylmethylsulfonylfluoride - PKI protein kinase inhibitor - RI ratio of independence for glycogen synthase - SDS sodium dodecyl sulphate  相似文献   

20.
A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP.Abbreviations GDP (GMP, GTP) guanosine 5-diphosphate (mono-, tri-); kDa-kilodalton - S0.5 concentration of substrate supporting half-maximal velocity - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tricine N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号