首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoproteins M (gM), E (gE), and I (gI) of pseudorabies virus (PrV) are required for efficient formation of mature virions. The simultaneous absence of gM and the gE/gI complex results in severe deficiencies in virion morphogenesis and cell-to-cell spread, leading to drastically decreased virus titers and a small-plaque phenotype (A. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Serial passaging in noncomplementing cells of a virus mutant unable to express gM, gE, and gI resulted in a reversion of the small-plaque phenotype and restoration of infectious virus formation to the level of a gM(-) mutant. Genetic analyses showed that reversion of the phenotype was accompanied by a genomic rearrangement which led to the fusion of a portion of the gE gene encoding the cytoplasmic domain to the 3' end of the glycoprotein D gene, resulting in expression of a chimeric gD-gE protein. Since this indicated that the intracytoplasmic domain of gE was responsible for the observed phenotypic alterations, the UL10 (gM) gene was deleted in a PrV mutant, PrV-107, which specifically lacked the cytoplasmic tail of gE. Regarding one-step growth, plaque size, and virion formation as observed under the electron microscope, the mutant lacking gM and the gE cytoplasmic tail proved to be very similar to the gE/I/M triple mutant. Thus, our data indicate that it is the cytoplasmic tail of gE which is responsible for the observed phenotypic effects in conjunction with deletion of gM. We hypothesize that the cytoplasmic domain of gE specifically interacts with components of the capsid and/or tegument, leading to efficient secondary envelopment of intracytoplasmic capsids.  相似文献   

2.
Herpes simplex virus 1 (HSV-1) viral glycoproteins gD (carboxyl terminus), gE, gK, and gM, the membrane protein UL20, and membrane-associated protein UL11 play important roles in cytoplasmic virion envelopment and egress from infected cells. We showed previously that a recombinant virus carrying a deletion of the carboxyl-terminal 29 amino acids of gD (gDΔct) and the entire gE gene (ΔgE) did not exhibit substantial defects in cytoplasmic virion envelopment and egress (H. C. Lee et al., J. Virol. 83:6115-6124, 2009). The recombinant virus ΔgM2, engineered not to express gM, produced a 3- to 4-fold decrease in viral titers and a 50% reduction in average plaque sizes in comparison to the HSV-1(F) parental virus. The recombinant virus containing all three mutations, gDΔct-ΔgM2-ΔgE, replicated approximately 1 log unit less efficiently than the HSV-1(F) parental virus and produced viral plaques which were on average one-third the size of those of HSV-1(F). The recombinant virus ΔUL11-ΔgM2, engineered not to express either UL11 or gM, replicated more than 1 log unit less efficiently and produced significantly smaller plaques than UL11-null or gM-null viruses alone, in agreement with the results of Leege et al. (T. Leege et al., J. Virol. 83:896-907, 2009). Analyses of particle-to-PFU ratios, relative plaque size, and kinetics of virus growth and ultrastructural visualization of glycoprotein-deficient mutant and wild-type virions indicate that gDΔct, gE, and gM function in a cooperative but not redundant manner in infectious virion morphogenesis. Overall, comparisons of single, double, and triple mutant viruses generated in the same HSV-1(F) genetic background indicated that lack of either UL20 or gK expression caused the most severe defects in cytoplasmic envelopment, egress, and infectious virus production, followed by the double deletion of UL11 and gM.  相似文献   

3.
S Mallory  M Sommer    A M Arvin 《Journal of virology》1997,71(11):8279-8288
The contributions of the glycoproteins gI (ORF67) and gE (ORF68) to varicella-zoster virus (VZV) replication were investigated in deletion mutants made by using cosmids with VZV DNA derived from the Oka strain. Deletion of both gI and gE prevented virus replication. Complete deletion of gI or deletions of 60% of the N terminus or 40% of the C terminus of gI resulted in a small plaque phenotype as well as reduced yields of infectious virus. Melanoma cells infected with gI deletion mutants formed abnormal polykaryocytes with a disrupted organization of nuclei. In the absence of intact gI, gE became localized in patches on the cell membrane, as demonstrated by confocal microscopy. A truncated N-terminal form of gI was transported to the cell surface, but its expression did not restore plaque morphology or infectivity. The fusogenic function of gH did not compensate for gI deletion or the associated disruption of the gE-gI complex. These experiments demonstrated that gI was dispensable for VZV replication in vitro, whereas gE appeared to be required. Although VZV gI was dispensable, its deletion or mutation resulted in a significant decrease in infectious virus yields, disrupted syncytium formation, and altered the conformation and distribution of gE in infected cells. Normal cell-to-cell spread and replication kinetics were restored when gI was expressed from a nonnative locus in the VZV genome. The expression of intact gI, the ORF67 gene product, is required for efficient membrane fusion during VZV replication.  相似文献   

4.
Z Yao  W Jackson    C Grose 《Journal of virology》1993,67(8):4464-4473
Varicella-zoster virus (VZV) glycoprotein gpI, the homolog of herpes simplex virus gE, functions as a receptor for the Fc portion of immunoglobulin G. Like other cell surface receptors, this viral receptor is highly phosphorylated in cell culture. To identify the precise location of the cellular kinase-mediated phosphorylation, we generated a tailless deletion mutant and several point mutants which had altered serine and threonine residues within the cytoplasmic domain of gpI. The mutated and wild-type genes of gpI were transfected and expressed within a vaccinia virus-T7 polymerase transfection system in order to determine what effect these mutations had on the phosphorylation state of the protein in vivo and in vitro. Truncation of the cytoplasmic domain of gpI diminished the phosphorylation of gpI in vivo. Examination of the point mutants established that the major phosphorylation sequence of gpI was located between amino acids 593 and 598, a site which included four phosphorylatable serine and threonine residues. Phosphorylation analyses of the mutant and wild-type glycoproteins confirmed that gpI was a substrate for casein kinase II, with threonines 596 and 598 being critical residues. Although the mutant glycoproteins were phosphorylated by casein kinase I, protease V8 partial digestion profiles suggested that casein kinase II exerted the major effect. Thus, these mutagenesis studies demonstrated that the gpI cytoplasmic sequence Ser-Glu-Ser-Thr-Asp-Thr was phosphorylated in mammalian cells in the absence of any other herpesvirus products. Since the region defined by transfection was consistent with results obtained with in vitro phosphorylation by casein kinase II, we propose that VZV gpI is a physiologic substrate for casein kinase II. Immunofluorescence and pulse-chase experiments demonstrated that the mutant glycoproteins were processed and transported to the outer cell membrane.  相似文献   

5.
Cross-reactive monoclonal antibodies recognizing both herpes simplex virus (HSV) glycoprotein B and a major 63,000-dalton varicella-zoster virus (VZV) envelope glycoprotein were isolated and found to neutralize VZV infection in vitro. None of the other VZV glycoproteins was recognized by any polyclonal anti-HSV serum tested. These results demonstrate that HSV glycoprotein B and the 63,000-dalton VZV glycoprotein share antigenic epitopes and raise the possibility that these two proteins have a similar function in infection.  相似文献   

6.
Crump CM  Hung CH  Thomas L  Wan L  Thomas G 《Journal of virology》2003,77(20):11105-11113
The final envelopment of herpesviruses during assembly of new virions is thought to occur by the budding of core viral particles into a late secretory pathway organelle, the trans-Golgi network (TGN), or an associated endosomal compartment. Several herpesvirus envelope glycoproteins have been previously shown to localize to the TGN when expressed independently from other viral proteins. In at least some cases this TGN localization has been shown to be dependent on clusters of acidic residues within their cytoplasmic domains. Similar acidic cluster motifs are found in endogenous membrane proteins that also localize to the TGN. These acidic cluster motifs interact with PACS-1, a connector protein that is required for the trafficking of proteins containing such motifs from endosomes to the TGN. We show here that PACS-1 interacts with the cytoplasmic domain of the HCMV envelope glycoprotein B (gB) and that PACS-1 function is required for normal TGN localization of HCMV gB. Furthermore, inhibition of PACS-1 activity in infected cells leads to a decrease in HCMV titer, whereas an increase in expression of functional PACS-1 leads to an increase in HCMV titer, suggesting that PACS-1 is required for efficient production of HCMV.  相似文献   

7.
The trafficking of varicella-zoster virus (VZV) gH was investigated under both infection and transfection conditions. In initial endocytosis assays performed in infected cells, the three glycoproteins gE, gI, and gB served as positive controls for internalization from the plasma membrane. Subsequently, we discovered that gH in VZV-infected cells was also internalized and followed a similar trafficking pattern. This observation was unexpected because all herpesvirus gH homologues have short endodomains not known to contain trafficking motifs. Further investigation demonstrated that VZV gH, when expressed alone with its chaperone gL, was capable of endocytosis in a clathrin-dependent manner, independent of gE, gI, or gB. Upon inspection of the short gH cytoplasmic tail, we discovered a putative tyrosine-based endocytosis motif (YNKI). When the tyrosine was replaced with an alanine, endocytosis of gH was blocked. Utilizing an endocytosis assay dependent on biotin labeling, we further documented that endocytosis of VZV gH was antibody independent. In control experiments, we showed that gE, gI, and gB also internalized in an antibody-independent manner. Alignment analysis of the VZV gH cytoplasmic tail to other herpesvirus gH homologues revealed two important findings: (i) herpes simplex virus type 1 and 2 homologues lacked an endocytosis motif, while all other alphaherpesvirus gH homologues contained a potential motif, and (ii) the VZV gH and simian varicella virus gH cytoplasmic tails were likely longer in length (18 amino acids) than predicted in the original sequence analyses (12 and 16 amino acids, respectively). The longer tails provided the proper context for a functional endocytosis motif.  相似文献   

8.
Varicella-zoster virus (VZV) encodes a cell surface Fc receptor, glycoprotein gE. VZV gE has previously been shown to display several features common to nonviral cell surface receptors. Most recently, VZV gE was reported to be tyrosine phosphorylated on a dimeric form (J. K. Olson, G. A. Bishop, and C. Grose, J. Virol. 71:110-119, 1997). Thereafter, attention focused on the ability of VZV gE to undergo receptor-mediated endocytosis. The current transient transfection studies demonstrated by confocal microscopy and internalization assays that VZV gE was endocytosed when expressed in HeLa cells. Endocytosis of gE was shown to be dependent on clathrin-coated vesicle formation within the cells. Subsequent colocalization studies showed that endocytosis of VZV gE closely mimicked endocytosis of the transferrin receptor. The gE cytoplasmic tail and more specifically tyrosine residue 582 were determined by mutagenesis studies to be important for efficient internalization of the protein; this tyrosine residue is part of a conserved YXXL motif. The amount of gE internalized at any given time reached a steady state of 32%. In addition, like the transferrin receptor, internalized gE recycled to the cell surface. The finding of gE endocytosis provided insight into earlier documentation of gE serine/threonine and tyrosine phosphorylation, since these phosphorylation events may serve as sorting signals for internalized receptors. Taken together with the previous discovery that both human and simian immunodeficiency virus envelope proteins can undergo endocytosis, the gE findings suggest that endocytosis of envelope components may be a posttranslational regulatory mechanism among divergent families of enveloped viruses.  相似文献   

9.
The herpes simplex virus type 1 UL20 protein (UL20p) is an important determinant for cytoplasmic virion morphogenesis and virus-induced cell fusion. To delineate the functional domains of the UL20 protein, we generated a panel of single and multiple (cluster) alanine substitutions as well as UL20p carboxyl-terminal truncations. The UL20 mutant genes could be broadly categorized into four main groups: Group I UL20 mutant genes complemented for both virus production and virus-induced cell fusion; Group II UL20 mutant genes did not complement for either virus-induced cell fusion or infectious virus production; Group III UL20 mutant genes complemented for virus-induced cell fusion to variable extents but exhibited substantially decreased ability to complement UL20-null infectious virus production; Group IV mutant genes complemented for infectious virus production but had variable effects on virus-induced cell fusion; this group included two mutants that efficiently complemented for gBsyn3, but not for gKsyn1, virus-induced cell fusion. In addition, certain recombinant viruses with mutations in either the amino or carboxyl termini of UL20p produced partially syncytial plaques on Vero cells in the absence of any other virally encoded syncytial mutations. These studies indicated that the amino and carboxyl termini of UL20p contained domains that functioned both in infectious virus production and virus-induced cell fusion. Moreover, the data suggested that the UL20p's role in virus-induced cell fusion can be functionally separated from its role in cytoplasmic virion morphogenesis and that certain UL20p domains that function in gB-syn3 virus-induced cell fusion are distinct from those functioning in gKsyn1 virus-induced cell fusion.  相似文献   

10.
The maturation and envelopment of varicella-zoster virus (VZV) was studied in infected human embryonic lung fibroblasts. Transmission electron microscopy confirmed that nucleocapsids acquire an envelope from the inner nuclear membrane as they enter the perinuclear-cisterna-rough endoplasmic reticulum (RER). Tegument is not detectable in these virions; moreover, in contrast to the mature VZV envelope, the envelope of VZV in the RER is not radioautographically labeled in pulse-chase experiments with [3H]mannose, and it lacks gpI immunoreactivity and complex oligosaccharides. This primary envelope fuses with the RER membrane (detected in cells incubated at 20 degrees C), thereby releasing nucleocapsids to the cytosol. Viral glycoproteins, traced by transmission electron microscopy radioautography in pulse-chase experiments with [3H]mannose, are transported to the trans-Golgi network (TGN) by a pathway that runs from the RER through an intermediate compartment and the Golgi stack. At later chase intervals, [3H]mannose labeling becomes associated with enveloped virions in post-Golgi locations (prelysosomes and plasma membrane). Nucleocapsids appear to be enveloped by wrapping in specialized cisternae, identified as the TGN with specific markers. Tegument-like material adheres to the cytosolic face of the concave surface of TGN sacs; nucleocapsids adhere to this protein, which is thus trapped between the nucleocapsid and the TGN-derived membrane that wraps around it. Experiments with brefeldin A suggest that tegument may bind to the cytosolic tails of viral glycoproteins. Fusion and fission convert the TGN-derived wrapping sacs into an inner enveloped virion and an outer transport vesicle that carries newly enveloped virions to cytoplasmic vacuoles. These vacuoles are acidic and were identified as prelysosomes. It is postulated that secreted virions are partially degraded by their exposure to the prelysosomal internal milieu and rendered noninfectious. This process explains the cell-associated nature of VZV in vitro; however, the mechanism by which the virus escapes diversion from the secretory pathway to the lysosomal pathway in vivo remains to be determined.  相似文献   

11.
A novel method has been developed to study the functional roles of individual vaccinia virus gene products that is neither limited by the possible essentiality of the target gene nor by the availability of conditional lethal mutants. The system utilises the E. coli lac repressor protein, the operator sequence to which it binds and the specific inducer IPTG. It allows the generation of recombinant viruses in which the expression of any chosen gene, and hence virus replication, can be externally controlled. In principle, this system is broadly applicable to the functional analysis of genes in any large DNA virus. This approach has demonstrated that the gene encoding the 14 kDa membrane protein of vaccinia virus is non-essential for the production of infectious intracellular virus particles, but essential for the envelopment of intracellular virions by Golgi membrane and for egress of mature extracellular viral particles. This is the first vaccinia virus protein shown to be specifically required for these processes. In vivo this system may prove useful as a means of attenuating recombinant vaccinia virus vaccines by preventing virus spread without reducing the amount of the foreign antigen expressed in each infected cell. Attenuation of other live virus vaccines may be developed in a similar way.  相似文献   

12.
Herpesviruses contain a number of envelope glycoproteins which play important roles in the interaction between virions and target cells. Although several glycoproteins are not present in all herpesviruses, others, including glycoproteins H and L (gH and gL), are conserved throughout the Herpesviridae. To elucidate common properties and differences in herpesvirus glycoprotein function, corresponding virus mutants must be constructed and analyzed in different herpesvirus backgrounds. Analysis of gH- mutants of herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) showed that in both viruses gH is essential for penetration and cell-to-cell spread and that its presence is required for virion localization of gL. Since gH homologs are found complexed with gL, it was of interest to assess the phenotype of gL- mutant viruses. By using this approach, HSV-1 gL has been shown to be required for entry and for virion localization of gH (C. Roop, L. Hutchinson, and D. Johnson, J. Virol. 67:2285-2297, 1993). To examine whether a similar phenotype is associated with lack of gL in another alphaherpesvirus, PrV, we constructed two independent gL- PrV mutants by insertion and deletion-insertion mutagenesis. The salient findings are as follows: (i) PrV gL is required for penetration of virions and cell-to-cell spread; (ii) unlike HSV-1, PrV gH is incorporated into the virion in the absence of gL; (iii) virion localization of gH in the absence of gL is not sufficient for infectivity; (iv) in the absence of gL, N-glycans on PrV gH are processed to a greater extent than in the presence of gL, indicating masking of N-glycans by association with gL; and (v) an anti-gL polyclonal antiserum is able to neutralize virion infectivity but did not inhibit cell-to-cell spread. Thus, whereas PrV gL is essential for virus replication, as is HSV-1 gL, gL- PrV mutants exhibit properties strikingly different from those of HSV-1. In conclusion, our data show an important functional role for PrV gL in the viral entry process, which is not explained by a chaperone-type mechanism in gH maturation and processing.  相似文献   

13.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms an inner coat directly underneath the lipid envelope of the virion. The outer surface of the lipid envelope surrounding the capsid is coated by the viral Env glycoproteins. We report here that the HIV-1 capsid-Env glycoprotein association is very sensitive to minor alterations in the MA protein. The results indicate that most of the MA domain of the Gag precursor, except for its carboxy terminus, is essential for this association. Viral particles produced by proviruses with small missense or deletion mutations in the region coding for the amino-terminal 100 amino acids of the MA protein lacked both the surface glycoprotein gp120 and the transmembrane glycoprotein gp41, indicating a defect at the level of Env glycoprotein incorporation. Alterations at the carboxy terminus of the MA domain had no significant effect on the levels of particle-associated Env glycoprotein or on virus replication. The presence of HIV-1 MA protein sequences was sufficient for the stable association of HIV-1 Env glycoprotein with hybrid particles that contain the capsid (CA) and nucleocapsid (NC) proteins of visna virus. The association of HIV-1 Env glycoprotein with the hybrid particles was dependent upon the presence of the HIV-1 MA protein domain, as HIV-1 Env glycoprotein was not efficiently recruited into virus particles when coexpressed with authentic visna virus Gag proteins.  相似文献   

14.
Egress of herpes simplex virus type 1 (HSV-1) from the nucleus of the infected cell to extracellular spaces involves a number of distinct steps, including primary envelopment by budding into the perinuclear space, de-envelopment into the cytoplasm, cytoplasmic reenvelopment, and translocation of enveloped virions to extracellular spaces. UL20/gK-null viruses are blocked in cytoplasmic virion envelopment and egress, as indicated by an accumulation of unenveloped or partially enveloped capsids in the cytoplasm. Similarly, UL11-null mutants accumulate unenveloped capsids in the cytoplasm. To assess whether UL11 and UL20/gK function independently or synergistically in cytoplasmic envelopment, recombinant viruses having either the UL20 or UL11 gene deleted were generated. In addition, a recombinant virus containing a deletion of both UL20 and UL11 genes was constructed using the HSV-1(F) genome cloned into a bacterial artificial chromosome. Ultrastructural examination of virus-infected cells showed that both UL20- and UL11-null viruses accumulated unenveloped capsids in the cytoplasm. However, the morphology and distribution of the accumulated capsids appeared to be distinct, with the UL11-null virions forming aggregates of capsids having diffuse tegument-derived material and the UL20-null virus producing individual capsids in close juxtaposition to cytoplasmic membranes. The UL20/UL11 double-null virions appeared morphologically similar to the UL20-null viruses. Experiments on the kinetics of viral replication revealed that the UL20/UL11 double-null virus replicated in a manner similar to the UL20-null virus. Additional experiments revealed that transiently expressed UL11 localized to the trans-Golgi network (TGN) independently of either gK or UL20. Furthermore, virus infection with the UL11/UL20 double-null virus did not alter the TGN localization of transiently expressed UL11 or UL20 proteins, indicating that these proteins did not interact. Taken together, these results show that the intracellular transport and TGN localization of UL11 is independent of UL20/gK functions, and that UL20/gK are required and function prior to UL11 protein in virion cytoplasmic envelopment.  相似文献   

15.
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. JCV encodes early proteins (large T antigen, small T antigen, and T' antigen) and four late proteins (agnoprotein, and three viral capsid proteins, VP1, VP2, and VP3). In the current study, a novel function for JCV agnoprotein in the morphogenesis of JC virion particles was identified. It was found that mature virions of agnoprotein-negative JCV are irregularly shaped. Sucrose gradient sedimentation and cesium chloride gradient ultracentrifugation analyses revealed that the particles of virus lacking agnoprotein assemble into irregularly sized virions, and that agnoprotein alters the efficiency of formation of VP1 virus-like particles. An in vitro binding assay and immunocytochemistry revealed that agnoprotein binds to glutathione S-transferase fusion proteins of VP1 and that some fractions of agnoprotein colocalize with VP1 in the nucleus. In addition, gel filtration analysis of formation of VP1-pentamers revealed that agnoprotein enhances formation of these pentamers by interacting with VP1. The present findings suggest that JCV agnoprotein plays a role, similar to that of SV40 agnoprotein, in facilitating virion assembly.  相似文献   

16.
17.
Sequence analysis within BamHI fragment 3 of the pseudorabies virus (PrV) genome revealed an open reading frame homologous to the UL10 gene of herpes simplex virus. A rabbit antiserum directed against a synthetic oligopeptide representing the carboxy-terminal 18 amino acids of the predicted UL10 product recognized a major 45-kDa protein in lysates of purified Pr virions. In addition, a second protein of 90 kDa which could represent a dimeric form was observed. Enzymatic deglycosylation showed that the PrV UL10 protein is N glycosylated. Therefore, it was designated PrV gM according to its homolog in herpes simplex virus. A PrV mutant lacking ca. 60% of UL10 coding sequences was able to productively replicate on noncomplementing cells, demonstrating that PrV gM is not required for viral replication in cell culture. However, infectivity of the mutant virus was reduced and penetration was delayed, indicating a modulatory role of PrV gM in the initiation of infection.  相似文献   

18.
The accumulation of recent data concerning the reactivity of monoclonal antibodies with particular varicella-zoster virus (VZV) glycoproteins and the mapping of several of their respective genes on the VZV genome has led to a unified nomenclature for the glycoprotein genes of VZV and their mature glycosylated products. Homologs to herpes simplex virus glycoprotein genes are noted.  相似文献   

19.
Furin is a transmembrane protein that cycles between the plasma membrane, endosomes, and the trans-Golgi network, maintaining a predominant distribution in the latter. It has been shown previously that Tac-furin, a chimeric protein expressing the extracellular and transmembrane domains of the interleukin-2 receptor alpha chain (Tac) and the cytoplasmic domain of furin, is delivered from the plasma membrane to the TGN through late endosomes, bypassing the endocytic recycling compartment. Tac-furin also recycles in a loop between the TGN and late endosomes. Localization of furin to the TGN is modulated by a six-amino acid acidic cluster that contains two phosphorylatable serines (SDSEED). We investigated the role of these serines in the trafficking of Tac-furin by using a mutant chimera in which the SDS sequence was replaced by the nonphosphorylatable sequence ADA (Tac-furin/ADA). Although the mutant construct is internalized and delivered to the TGN, both the postendocytic trafficking and the steady-state distribution were found to differ from the wild-type. In contrast with Tac-furin, Tac-furin/ADA does not enter late endosomes after being internalized. Instead, it traffics with transferrin to the endocytic recycling compartment, and from there it is delivered to the TGN. As with Tac-furin, Tac-furin/ADA is sorted from the TGN into late endosomes at steady state, but its retrieval from the late endosomes to the TGN is inhibited. These results suggest that serine phosphorylation plays an important role in at least two steps of Tac-furin trafficking, acting as an active sorting signal that mediates the selective sorting of Tac-furin into late endosomes after internalization, as well as its retrieval from late endosomes back to the TGN.  相似文献   

20.
Varicella-zoster virus (VZV) is enveloped in the trans-Golgi network (TGN). Here we report that glycoprotein I (gI) is required within the TGN for VZV envelopment. Enveloping membranous TGN cisternae were microscopically identified in cells infected with intact VZV. These sacs curved around, and ultimately enclosed, nucleocapsids. Tegument coated the concave face of these sacs, which formed the viral envelope, but the convex surface was tegument-free. TGN cisternae of cells infected with VZV mutants lacking gI (gI(Delta)) or its C (gI(DeltaC))- or N-terminal (gI(DeltaN))-terminal domains were uniformly tegument coated and adhered to one another, forming bizarre membranous stacks. Viral envelopment was compromised, and no virions were delivered to post-Golgi structures. The TGN was not gI-immunoreactive in cells infected with the gI(Delta) or gI(DeltaN) mutants, but it was in cells infected with gI(DeltaC) (because the ectodomains of gI and gE interact). The presence in the TGN of gI lacking a C-terminal domain, therefore, was not sufficient to maintain enveloping cisternae. In cells infected with intact VZV or with gI(Delta), gI(DeltaN), or gI(DeltaC) mutants, ORF10p immunoreactivity was concentrated on the cytosolic face of TGN membranes, suggesting that it interacts with the cytosolic domains of glycoproteins. Because of the gE-gI interaction, cotransfected cells that expressed gE or gI were able to target truncated forms of the other to the TGN. Our data suggest that the C-terminal domain of gI is required to segregate viral and cellular proteins in enveloping TGN cisternae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号