首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors obtained from phorbol myristate acetate (PMA)-stimulated EL-4 thymoma cells, a continuous T cell line, suppressed lymphokine-induced macrophage activation to kill intracellular Leishmania tropica amastigotes. Suppression of this macrophage effector activity was dependent upon concentration of EL-4 fluids admixed with lymphokines in infected macrophage cultures, and was not due to residual PMA or factors released from unstimulated EL-4 cells. Fluids from PMA-stimulated EL-4 cells did not affect the expression of microbicidal activity by macrophages activated in vivo as a consequence of infections with Mycobacterium bovis strain BCG, nor did they abrogate intracellular killing activities by C3H/HeJ macrophages primed by BCG infection and triggered by lymphokines in vitro. That the action of this EL-4 suppressor activity was at the priming stage of macrophage activation was confirmed by kinetic studies: EL-4 fluids added to lymphokine-treated cells in the first 4 hr of treatment completely suppressed intracellular killing of L. tropica; fluids added after 4 hr were not effective. The effects of these EL-4 factors appeared to be selective: of three effector activities of activated macrophages tested, induction of resistance to infection, tumor cytotoxicity, and intracellular destruction of L. tropica, only intracellular killing by lymphokine-treated macrophages was significantly suppressed. These T cell-derived soluble suppressor factor(s) may provide insight into mechanisms of immunosuppression during leishmanial disease and perhaps other intracellular parasitic infections.  相似文献   

2.
Summary Four consecutively produced batches of Bacillus Calmette-Guérin (BCG) especially intended to be used for cancer immunotherapy were investigated for consistency of the vaccine. Each batch was investigated directly after production of the vaccine, so that the four batches were not tested simultaneously. The activity of the four batches was investigated in general safety assays, immunostimulation assays, and two different tumor models.General safety assays showed dose-dependent growth retardation and increased serum glutamic pyruvic transaminase activity in mice, and a long-lasting temperature rise in rabbits after IV administration of the BCG preparations. In a skin reactivity assay, reactions were found acceptable for all preparations when compared with a reference batch.The results of the immunostimulation and antitumor studies can be summarized as follows. All four batches induced a specific delayed-type hypersensitivity reaction to PPD, indicating the induction of cell-mediated immunity. A stimulating effect on lymphoreticular organs was concluded from increased spleen weight and enhanced cell proliferation in draining lymph nodes. Enhanced macrophage function (phagocytosis and killing of bacteria) was demonstrated by an increased resistance to Listeria monocytogenes. YAC lymphoma target cells were killed nonspecifically by BCG-activated peritoneal exudate cells (PEC), indicating the induction of natural killing activity by BCG.Intralesional injection of BCG induced tumor regression in the guinea pig line 10 hepatocellular carcinoma, followed by immunity to the line 10 tumor. In the murine 5D04 squamous cell carcinoma, BCG had no effect on the primary tumor. However, IV-injected BCG resulted in a decreased number of lung metastases.In general, the four consecutively produced batches showed similar safety and activity in the immunostimulation assays and antitumor activity. Since only minor differences between the batches were found, which can also be attributed to the variation in experimental conditions common to biological assays, it is concluded that the vaccine batches produced show an acceptable consistency.Abbreviations used BCG, Bacillus Calmette-Guérin; C. parvum, Corynebacterium parvum; c. p., culturable particles; IU, international unit; PPD, purified protein derivative; PEC, peritoneal exudate cells  相似文献   

3.
4.
Hwang SA  Kruzel ML  Actor JK 《Biochimie》2009,91(1):76-85
The current vaccine for tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is an attenuated strain of Mycobacterium bovis bacillus Calmette-Guerin (BCG). BCG has proven to be effective in children, however, efficacy wanes in adulthood. Lactoferrin, a natural protein with immunomodulatory properties, is a potential adjuvant candidate to enhance efficacy of BCG. These studies define bovine lactoferrin as an enhancer of the BCG vaccine, functioning in part by modulating macrophage ability to present antigen and stimulate T-cells. BCG-infected bone marrow derived macrophages (BMMs) cultured with bovine lactoferrin increased the number of MHC II(+) expressing cells. Addition of IFN-gamma and lactoferrin to BCG-infected BMMs enhanced MHC II expressiona dna increased the ratio of CD86/CD80. Lactoferrin treated BCG-infected BMMs were able to stimulate an increase in IFN-gamma production from presensitized CD3(+) splenocytes. Together, these results demonstrate that bovine lactoferrin is capable of modulating BCG-infected macrophages to enhance T-cell stimulation through increased surface expression of antigen presentation and co-stimulatory molecules, which potentially explains the observed in vivo bovine lactoferrin enhancement of BCG vaccine efficacy to protect against virulent MTB infection.  相似文献   

5.
Disease-associated alterations in macrophage functions were assessed by investigating the stages of activation of peritoneal macrophages obtained from adjuvant-induced arthritic rats. The stages of activation were established by defining several functional parameters in macrophages obtained from normal, sterile-irritant injected and Propionibacterium acnes injected animals. Peritoneal macrophages taken from arthritic rats 17 days post adjuvant injection displayed parameters characteristic of activated, but not elicited or resident macrophages. Specifically, an increased number of macrophages was recovered from arthritic rats which spread readily in culture, exhibited enhanced Fc receptor-mediated phagocytosis, increased leucine aminopeptidase ectoenzyme activity, enhanced secretion of prostaglandin E2 and interleukin 1, and ability to lyse tumor cells spontaneously. In addition, these macrophages were impaired in their ability to secrete superoxide anion. These data demonstrate distinct differences in parameters of peritoneal macrophage activation in rats compared to mice and that macrophage activation is associated with disease progression in adjuvant-induced arthritic rats.  相似文献   

6.
The antitumor activity and arachidonic acid metabolism of operationally defined macrophage populations was examined. Macrophages from mice injected with Mycobacterium bovis (strain BCG) or with pyran-copolymer were cytotoxic for tumor cells. The major arachidonic acid metabolite of these cells was PGE2. Neither resident nor elicited macrophages were cytotoxic. However, elicited macrophages as well as macrophages from BCG injected mice inhibited tumor cell growth. The production of arachidonic acid metabolites by elicited cells, while low initially, was followed by a rapid increase in PGE2. The major metabolites of resident cells were PGE2 and prostacyclin. The cAMP:cGMP ratio correlated with the metabolic activity of the cells.  相似文献   

7.
The role of peritoneal macrophages induced by Bacillus Calmette-Guérin (BCG) in the induction of immune responses to Listeria monocytogenes was studied in mice. The peritoneal macrophages from mice treated with BCG 14 days previously contained a high proportion of Ia-bearing macrophages (approximately 56%) and the cells showed not only a high level of listericidal activity but also a strong ability for presentation of listerial antigen to Listeria-immune T cells. An intraperitoneal inoculation with a low dose of Listeria, which can induce the maximal level of delayed footpad reaction (DFR) and positive migration inhibitory activity of macrophages in untreated mice, did not induce a detectable level of such responses in BCG-treated mice. The bacterial growth at an early stage of infection was suppressed by scavenger macrophages in these mice. On the other hand, BCG-treated mice showed the early development of DFR and macrophage migration inhibitory activity after an inoculation with a high dose of Listeria. It is revealed in transfer experiments that Listeria-pulsed peritoneal exudate cells induced by BCG elicited the highest level of DFR and positive migration inhibition of macrophages in normal mice at the earlier period of injection compared with Listeria-pulsed resident peritoneal cells. These results suggested that the increased activities of macrophages acting as scavenger cells and as antigen-presenting cells play important roles in the modification of immune responses to Listeria in BCG-treated mice.  相似文献   

8.
Surfactant-associated protein A (SP-A) is involved in surfactant homeostasis and host defense in the lung. We have previously demonstrated that SP-A specifically binds to and enhances the ingestion of bacillus Calmette-Guerin (BCG) organisms by macrophages. In the current study, we investigated the effect of SP-A on the generation of inflammatory mediators induced by BCG and the subsequent fate of ingested BCG organisms. Rat macrophages were incubated with BCG in the presence and absence of SP-A. Noningested BCG organisms were removed, and the release of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide were measured at varying times. TNF-alpha and nitric oxide production induced by BCG were enhanced by SP-A. In addition, SP-A enhanced the BCG-induced increase in the level of inducible nitric oxide synthase protein. Addition of antibodies directed against SPR210, a specific macrophage SP-A receptor, inhibited the SP-A-enhanced mediator production. BCG in the absence of SP-A showed increased growth over a 5-day period, whereas inclusion of SP-A dramatically inhibited BCG growth. Inhibition of nitric oxide production blocked BCG killing in the presence and absence of SP-A. These results demonstrate that ingestion of SP-A-BCG complexes by rat macrophages leads to production of inflammatory mediators and increased mycobacterial killing.  相似文献   

9.
Summary Peritoneal macrophages from tuftsin or MDP-treated mice were tested for their cytostatic activity for tumor cell proliferation. Both substances are able to activate macrophages either after intravenous injection or after incubation in vitro with normal macrophages. But a stimulation as well as an inhibition of tumor cell growth can result from macrophage activation depending on the timing and dose injected. Restoration of the impaired cytostatic capacity of macrophages of mice observed with aging, is obtained by repeated administration of tuftsin. Normal and BCG-stimulated macrophages were examined for their regulatory activity on the proliferation of P815 tumor cells. Low density of macrophages per well determines a stimulation of target cell growth whether the macrophages are normal or activated. When the number of macrophages is increased, under conditions in which normal macrophages are not inhibitory. BCG-stimulated macrophages exert already a strong cytostatic activity. At high macrophage content it appears that normal macrophages can also display an inhibitory activity. Macrophage-tumor cell interactions are highly dependent on the concentration and the state of activation of macrophages.Reprint requests should be addressed to M. Bruley-Rosset  相似文献   

10.
The antitumor activity and arachidonic acid metabolism of operationally defined macrophage populations was examined. Macrophages from mice injected with (strain BCG) or with pyran-copolymer were cytotoxic for tumor cells. The major arachidonic acid metabolite of these cells was PGE2. Neither resident nor elicited macrophages were cytotoxic. However, elicited macrophages as well as macrophages from BCG injected mice inhibited tumor cell growth. The production of arachidonic acid metabolites by elicited cells, while low initially, was followed by a rapid increase in PGE2. The major metabolites of resident cells were PGE2 and prostacyclin. The cAMP:cGMP ratio correlated with the metabolic activity of the cells.  相似文献   

11.
12.
Alveolar macrophages obtained from Syrian golden hamsters were tested for their ability to destroy tumor cells. Only macrophages obtained from BCG immune animals rechallenged intratracheally with BCG five days before assay exhibited cytotoxic activity. Maximum destruction of tumor cells occurred after 5 days of incubation. Immunologic activation of macrophages was required to attain cytotoxic alveolar macrophages. Induction of inflammatory lung exudates by a variety of nonspecific irritants did not result in tumor cell destruction by macrophages. These observations may prove useful in designing an approach for immunotherapy of lung cancer.  相似文献   

13.
Tuberculosis is a major cause of death in mankind and BCG vaccine protects against childhood but not adult tuberculosis. BCG avoids lysosomal fusion in macrophages decreasing peptides required for activating CD4 T cells and Th1 immunity while suppressing the expression of MHC-II by antigen presenting cells (APCs). An in vitro model of antigen presentation showed that ligands for TLR-9, 7, 4 and 1/2 increased the ability of APCs to present antigen-85B of BCG to CD4 T cells, which correlated with an increase in MHC-II expression. TLR-activation led to a down-regulation of MARCH1 ubiquitin ligase which prevents the degradation of MHC-II and decreased IL-10 also contributed to an increase in MHC-II. TLR-activation induced up-regulation of MHC-II was inhibited by the blockade of IRAK, NF-kB, and MAPKs. TLR-7 and TLR-9 ligands had the most effective adjuvant like effect on MHC-II of APCs which allowed BCG vaccine mediated activation of CD4 T cells.  相似文献   

14.
The experiment on (BALB/cXC57BL)F1 mice, showing a high level of delayed hypersensitivity (DH) when sensitized with BCG vaccine and Staphylococcus aureus strain B-243, has demonstrated the influence of such sensitization and DH reaction induced by the injection of a specific antigen (old tuberculin or staphylococcal phagolysate) into the sensitized animals on the cytotoxicity of macrophages, natural killers (NK) and antibody-dependent killers (ADK). Sensitization with BCG vaccine alone results in an insignificant rise in the activity of these effector cells, and sensitization with S. aureus produces no changes at all. The pronounced activation of the cytotoxicity of macrophages, NK and, to a lesser extent, ADK has been observed in DH reaction induced by the injection of a specific antigen into the sensitized mice. In the course of DH reaction a rise in the activity of NK and ADK not only against tumor target cells, but also against microbial ones (Candida albicans and S. aureus) has been found to occur.  相似文献   

15.
Summary The present study was designed to determine whether antitumor activity of macrophages induced with OK-432 and cyclophosphamide was mainly dependent on their ability to produce a soluble factor, that is,l-arginine-dependent nitric oxide as measured by nitrite concentration. Nitrite production by peritoneal macrophages from NIH Swiss mice pretreated with OK-432 (125 KE/kg) i.p. twice at 1-week intervals and with cyclophosphamide (200 mg/kg) i.p. 2 days before the second OK-432 treatment, increased with time for 24 h, and proportionally depended on macrophage numbers. Nitrite production was inhibited by actinomycin D and puromycin but not by mitomycin C.N G-Monomethyl-l-arginine, a specific competitive inhibitor ofl-arginine-dependent nitric oxide synthesis, also inhibited production. There was a close correlation between nitrite production and antitumor activity in macrophages from mice pretreated with either OK-432 and cyclophosphamide, OK-432, or thioglycolate broth. OK-432 increased both nitrite production and antitumor activities when added to the macrophage from mice pretreated with OK-432 but not with thioglycolate broth. Both activities of macrophages from mice pretreated with OK-432 and cyclophosphamide were enhanced with increasing concentrations ofl-arginine (0.125–1 mM) in the culture medium.d-Arginine, however, did not substitute forl-arginine. Neither activity was affected by contact between the macrophage and the EL4 cell. The macrophage showed antitumor activity through a membrane filter though the activity was greatly reduced. This antitumor activity of macrophages through a membrane was also inhibited byN G-Monomethyl-l-arginine, and increased by OK-432. However, conditioned media, obtained by culturing macrophages induced with OK-432 and cyclophosphamide, inhibited growth of EL4 cells. This activity was carried out by dialysable and non-dialysable factors. One of the dialysable factors was nitrite, an oxidized product of nitric oxide. The antitumor activity of non-dialysable factors was heat-stable and production of factors was increased byN G-Monomethyl-l-arginine and OK-432. Also, non-dialysable factors increased both antitumor and nitrite production activities of OK-432-elicited macrophages, when incubated with factors. Such activity of factors was also heat-stable. The production of factors increased with incubation time of macrophages, and was not inhibited byN G-Monomethyl-l-arginine. These results indicate that in vitro antitumor activity of macrophages induced with OK-432 and cyclophosphamide was mainly dependent onl-arginine-dependent nitric oxide, and that macrophageassociated soluble factors other than nitric oxide were also needed to inhibit fully tumor growth in vitro.  相似文献   

16.
The expression of macrophage antitumor activity and the production of prostaglandins (PG) by operationally defined macrophage populations differed under varying culture conditions. Culture conditions that caused increased PGE2 production by activated macrophages resulted in an inhibition of their tumoricidal activity. In contrast, production of high levels of PGE2 by resident and elicited macrophages was associated with an increase in antitumor activity. The activation of resident or elicited cells by lipopolysaccharide (LPS) could be blocked by indomethacin. Treatment of these macrophages with PGE2 alone also resulted in their activation and subsequent tumor cell destruction. Activation of resident and elicited macrophages by LPS appears to be mediated by PGE2.  相似文献   

17.
The aim of this study was to determine phenotypic differences when BCG invades macrophages. Bacilli prepared from the same BCG primary seed, but produced in different culture media, were analysed with respect to the ability to stimulate macrophages and the susceptibility to treatment with cytokines and nitric oxide (NO). Tumour necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, interleukin-6 (IL-6) and interferon-gamma (IFN-gamma) were assayed by enzyme-linked immunosorbent assay (ELISA), whereas NO levels were detected by Griess colorimetric reactions in the culture supernatant of macrophages incubated with IFN-gamma, TNF or NO and subsequently exposed to either BCG-I or BCG-S. We found that BCG-I and BCG-S bacilli showed different ability to simulate peritoneal macrophages. Similar levels of IL-6 were detected in stimulated macrophages with lysate from two BCG samples. The highest levels of TNF and IFN-gamma were observed in macrophages treated with BCG-S and BCG-I, respectively. The highest levels of NO were observed in cultures stimulated for 48 h with BCG-S. We also found a different susceptibility of the bacilli to exogenous treatment with IFN-gamma and TNF which were capable of killing 60 and 70% of both bacilli, whereas NO was capable of killing about 98 and 47% of BCG-I and BCG-S, respectively. The amount of bacilli proportionally decreased with IFN-gamma and TNF, suggesting a cytokine-related cytotoxic effect. Moreover, NO also decreased the viable number of bacilli. Interestingly, NO levels of peritoneal macrophages were significantly increased after cytokine treatment. This indicates that the treatment of macrophages with cytokines markedly reduced bacilli number and presented effects on NO production. The results obtained here emphasize the importance of adequate stimulation for guaranteeing efficient killing of bacilli. In this particular case, the IFN-gamma and TNF were involved in the activation of macrophage bactericidal activity.  相似文献   

18.
When macrophages phagocytose chitin (N-acetyl-d-glucosamine polymer) microparticles, mitogen-activated protein kinases (MAPK) are immediately activated, followed by the release of Th1 cytokines, but not IL-10. To determine whether phagocytosis and macrophage activation in response to chitin microparticles are dependent on membrane cholesterol, RAW264.7 macrophages were treated with methyl-beta-cytodextrin (MBCD) and stimulated with chitin. These results were compared with the corresponding effects of bacterial components including heat-killed (HK) Mycobacterium bovis bacillus Calmette-Guèrin (BCG) and an oligodeoxynucleotide (ODN) of bacterial DNA (CpG-ODN). The MBCD treatment did not alter chitin binding or the phagocytosis of chitin particles 20 min after stimulation. At the same time, however, chitin-induced phosphorylation of cellular MAPK was accelerated and enhanced in an MBCD dose-dependent manner. The increased phosphorylation was also observed for chitin phagosome-associated p38 and ERK1/2. In contrast, CpG-ODN and HK-BCG induced activation of MAPK in MBCD-treated cells at levels comparable to, or only slightly more than, those of control cells. We also found that MBCD treatment enhanced the production of tumor necrosis factor-alpha (TNF-alpha) and the expression of cyclooxygenase-2 (COX-2) in response to chitin microparticles. In neither MBCD- nor saline-treated macrophages, did chitin particles induce detectable IL-10 mRNA synthesis. CpG-ODN induced TNF-alpha production, and COX-2 expression were less sensitive to MBCD treatment. Among the agonists studied, our results indicate that macrophage activation by chitin microparticles was most sensitive to cholesterol depletion, suggesting that membrane structures integrated by cholesterol are important for physiological regulation of chitin microparticle-induced cellular activation.  相似文献   

19.
We examined the effects of TGF-beta 1 on induction of several activated macrophage antimicrobial activities against the protozoan parasite Leishmania, and on induction of tumoricidal activity against the fibrosarcoma tumor target 1023. TGF-beta by itself did not affect the viability of either the intracellular or extracellular target in concentrations up to 200 ng/ml. As little as 1 ng/ml TGF-beta, however, suppressed more than 70% of the intracellular killing activity of macrophages treated with lymphokines. In contrast, more than 100 ng/ml TGF-beta was required to suppress intracellular killing by cells activated with an equivalent amount of recombinant IFN-gamma. Addition of TGF-beta for up to 30 min after exposure to activation factors significantly reduced macrophage killing of intracellular parasites. Pretreatment of macrophages with TGF-beta was even more effective: treatment of cells with TGF-beta for 4 h before addition of activation factors abolished all macrophage intracellular killing activity. Regardless of treatment sequence, however, TGF-beta had absolutely no effect, at any concentration tested, on activated macrophage resistance to infection induced by lymphokines or by the cooperative interaction of IFN-gamma and IL-4. Effects of TGF-beta on tumoricidal activity of activated macrophages was intermediate to that of its effects on intracellular killing or resistance to infection. Lymphokine-induced tumor cytotoxicity was marginally (25%) affected by TGF-beta; 200 ng/ml was able to suppress IFN-gamma-induced tumoricidal activity by 40%. Thus, TGF-beta dramatically suppressed certain activated macrophage cytotoxic effector reactions, but was only partially or not at all effective against others, even when the same activation agent (IFN-gamma) was used. The biochemical target for TGF-beta suppressive activity in these reactions may be the pathway for nitric oxide production from L-arginine, because TGF-beta also inhibited the generation of nitric oxide by cytokine-activated macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号