首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crab-eating fox is a medium-sized Neotropical canid with generalist habits and a broad distribution in South America. We have investigated its genetic diversity, population structure and demographic history across most of its geographic range by analysing 512 base pairs (bp) of the mitochondrial DNA (mtDNA) control region, 615 bp of the mtDNA cytochrome b gene and 1573 total nucleotides from three different nuclear fragments. MtDNA data revealed a strong phylogeographic partition between northeastern Brazil and other portions of the species' distribution, with complete separation between southern and northern components of the Atlantic Forest. We estimated that the two groups diverged from each other c. 400,000-600,000 years ago, and have had contrasting population histories. A recent demographic expansion was inferred for the southern group, while northern populations seem to have had a longer history of large population size. Nuclear sequence data did not support this north-south pattern of subdivision, likely due at least in part to secondary male-mediated historical gene flow, inferred from multilocus coalescent-based analyses. We have compared the inferred phylogeographic patterns to those observed for other Neotropical vertebrates, and report evidence for a major north-south demographic discontinuity that seems to have marked the history of the Atlantic Forest biota.  相似文献   

2.
The jaguar (Panthera onca), the largest felid in the American Continent, is currently threatened by habitat loss, fragmentation and human persecution. We have investigated the genetic diversity, population structure and demographic history of jaguars across their geographical range by analysing 715 base pairs of the mitochondrial DNA (mtDNA) control region and 29 microsatellite loci in approximately 40 individuals sampled from Mexico to southern Brazil. Jaguars display low to moderate levels of mtDNA diversity and medium to high levels of microsatellite size variation, and show evidence of a recent demographic expansion. We estimate that extant jaguar mtDNA lineages arose 280 000-510 000 years ago (95% CI 137 000-830 000 years ago), a younger date than suggested by available fossil data. No strong geographical structure was observed, in contrast to previously proposed subspecific partitions. However, major geographical barriers such as the Amazon river and the Darien straits between northern South America and Central America appear to have restricted historical gene flow in this species, producing measurable genetic differentiation. Jaguars could be divided into four incompletely isolated phylogeographic groups, and further sampling may reveal a finer pattern of subdivision or isolation by distance on a regional level. Operational conservation units for this species can be defined on a biome or ecosystem scale, but should take into account the historical barriers to dispersal identified here. Conservation strategies for jaguars should aim to maintain high levels of gene flow over broad geographical areas, possibly through active management of disconnected populations on a regional scale.  相似文献   

3.
The microsatellite loci FCA045, FCA077, FCA008, and FCA096 are highly variable molecular markers which were used to determine the genetic diversity in 148 captive Leopardus sp. The PCR-amplified products of microsatellite loci were characterized in ABI Prism 310 Genetic Analyzer. Allele numbers, heterozygosity, polymorphism information content, exclusive allele number, and shared alleles were calculated. Sixty-five alleles were found and their sizes ranged from 116 to 216 bp in four microsatellite loci. The heterozygosity ranged from 0.36 to 0.81 in Leopardus pardalis, 0.57 to 0.67 in L. tigrinus and 0.80 to 0.92 in L. wiedii. The polymorphism information content was from 0.80 to 0.88 in L. pardalis, 0.76 to 0.88 in L. tigrinus and 0.77 to 0.90 in L. wiedii. The margay (L. wiedii) showed the highest index of polymorphism among the three species in this study. These results imply that microsatellite DNA markers can help in the study of the genetic diversity of Leopardus specimens.  相似文献   

4.
《Mammalian Biology》2014,79(6):393-397
The guiña (Leopardus guigna) is a small felid found primarily in temperate mixed forests of southern Andean and coastal ranges in Chile and Argentina. It is considered a vulnerable species, and is one of the least studied felids in the world. In this study our main aim was to document the relationship between the activity pattern of the guiña and that of its main prey in the Valdivian rainforest (Comau Fjord, southern Chile) using a camera-trap survey. We documented the activity patterns of small mammals and two ground-foraging bird species, as these have been previously cited as the main prey of this felid. Guiñas showed two nocturnal activity peaks, at the beginning and the end of the night, and a weak peak of activity at midday. Small mammals consistently revealed nocturnal activity, whereas both birds were strongly diurnal. Our results revealed a high overlap between the activity patterns of guiñas and small mammals, whereas this was negligible for the bird species. These findings support the idea that small mammals are guiñas’ preferred prey in the Valdivian rainforest. Our study contributes to the understanding of the temporal relationships between the guiña and its prey, and may help to design effective management strategies to conserve this vulnerable felid.  相似文献   

5.
Ancient DNA (aDNA) analyses have proven to be important tools in understanding human population dispersals, settlement patterns, interactions between prehistoric populations, and the development of regional population histories. Here, we review the published results of sixty-three human populations from throughout the Americas and compare the levels of diversity and geographic patterns of variation in the ancient samples with contemporary genetic variation in the Americas in order to investigate the evolution of the Native American gene pool over time. Our analysis of mitochondrial haplogroup frequencies and prehistoric population genetic diversity presents a complex evolutionary picture. Although the broad genetic structure of American prehistoric populations appears to have been established relatively early, we nevertheless identify examples of genetic discontinuity over time in select regions. We discuss the implications this finding may have for our interpretation of the genetic evidence for the initial colonization of the Americas and its subsequent population history.  相似文献   

6.
The least weasel (Mustela nivalis) is one of the most widely distributed carnivorans. While previous studies have identified distinct western and eastern mitochondrial DNA (mtDNA) lineages of the species in the western Palearctic, their broader distributions across the Palearctic have remained unknown. To address the broad-scale phylogeographical structure, we expanded the sampling to populations in Eastern Europe, the Urals, the Russian Far East, and Japan, and analyzed the mtDNA control region and cytochrome b, the final intron of the zinc finger protein on Y chromosome (ZFY), and the autosomal agouti signaling protein gene (ASIP). The mtDNA data analysis exposed the previous western lineage (Clade I) but poorly supported assemblage extending across Palearctic, whereas the previous eastern lineage (Clade II) was reconfirmed and limited in the south western part of the Palearctic. The ZFY phylogeny showed a distinctive split that corresponding to the mtDNA lineage split, although less phylogeographical structure was seen in the ASIP variation. Our data concur with the previous inference of the Black Sea–Caspian Sea area having an ancestral character. The Urals region harbored high mitochondrial diversity, with an estimated coalescent time of around 100,000 years, suggesting this could have been a cryptic refugium. Based on the coalescent-based demographic reconstructions, the expansion of Clade I across the Palearctic was remarkably rapid, while Clade II was relatively stable for a longer time. It seems that Clade II has maintained a constant population size in the temperate region, and the expansive Clade I represents adaptation to the cold regions.  相似文献   

7.
European bat lyssaviruses types 1 and 2 (EBLV-1 and EBLV-2) are widespread in Europe, although little is known of their evolutionary history. We undertook a comprehensive sequence analysis to infer the selection pressures, rates of nucleotide substitution, age of genetic diversity, geographical origin, and population growth rates of EBLV-1. Our study encompassed data from 12 countries collected over a time span of 35 years and focused on the glycoprotein (G) and nucleoprotein (N) genes. We show that although the two subtypes of EBLV-1--EBLV-1a and EBLV-1b--have both grown at a low exponential rate since their introduction into Europe, they have differing population structures and dispersal patterns. Furthermore, there were strong constraints against amino acid change in both EBLV-1 and EBLV-2, as reflected in a low ratio of nonsynonymous to synonymous substitutions per site, particularly in EBLV-1b. Our inferred rate of nucleotide substitution in EBLV-1, approximately 5 x 10(-5) substitutions per site per year, was also one of the lowest recorded for RNA viruses and implied that the current genetic diversity in the virus arose 500 to 750 years ago. We propose that the slow evolution of EBLVs reflects their distinctive epidemiology in bats, where they occupy a relatively stable fitness peak.  相似文献   

8.
  • 1 During the Last Glacial Maximum, European red deer Cervus elaphus occurred in refugia in Iberia/southern France, Italy, the Balkans and the Carpathians. Most of Europe, including large parts of the east and north‐east, is now inhabited by red deer from the western lineage. The eastern lineage is largely confined to south‐eastern Europe; a third lineage comprises Sardo‐Corsican and Barbary red deer.
  • 2 Sardo‐Corsican, Barbary and Mesola red deer are genetically unique units. They exhibit low levels of genetic diversity and deserve particular protection, since conservation strategies should target genetic information.
  • 3 Hybridization between sika Cervus nippon and red deer occurs rarely, but may lead to extensive introgression, particularly in parts of the British Isles. Further expansion of both species may lead to increased hybridization in continental Europe.
  • 4 Although hunting has an impact on red deer gene pools, the main threat today is habitat fragmentation in human‐dominated landscapes. The resulting increase in genetic drift and inbreeding reduces variability in isolated populations and may lead to inbreeding depression. To support vital meta‐populations, migration corridors should be established.
  相似文献   

9.
Abbott CL  Double MC 《Molecular ecology》2003,12(10):2747-2758
The evolutionary relationship between shy (Thalassarche cauta) and white-capped (T. steadi) albatrosses was examined using mitochondrial control region sequences. Results were interpreted in the context of a recent and contentious taxonomic revision that recommended full species status for shy and white-capped albatrosses. Low sequence divergence between shy and white-capped albatrosses (1.8%) and between their close relatives, Salvin's and Chatham albatrosses (2.9%), was observed. Much higher sequence divergence was found between the shy/white-capped pair and the Salvin's/Chatham pair (7.0%). Phylogenetic analyses confirmed the separation of the shy/white-capped pair from the Salvin's/Chatham pair but did not provide species-level resolution. Phylogeographic analyses, including a nested clade analysis, FST estimates and an analysis of molecular variance, indicated unambiguous genetic structuring between shy and white-capped albatrosses, thus confirming the demographic isolation of the species, but showed little to no structuring within each species. The geographical distribution of mtDNA haplotypes and other evidence suggest that shy albatrosses arose through range expansion by white-capped albatrosses.  相似文献   

10.

Background  

The role of Pleistocene glacial oscillations in current biodiversity and distribution patterns varies with latitude, physical topology and population life history and has long been a topic of discussion. However, there had been little phylogeographical research in south China, where the geophysical complexity is associated with great biodiversity. A bird endemic in Southeast Asia, the Grey-cheeked Fulvetta, Alcippe morrisonia, has been reported to show deep genetic divergences among its seven subspecies. In the present study, we investigated the phylogeography of A. morrisonia to explore its population structure and evolutionary history, in order to gain insight into the effect of geological events on the speciation and diversity of birds endemic in south China.  相似文献   

11.
Changes in Dengue virus (DENV) disease patterns in the Americas over recent decades have been attributed, at least in part, to repeated introduction of DENV strains from other regions, resulting in a shift from hypoendemicity to hyperendemicity. Using newly sequenced DENV-1 and DENV-3 envelope (E) gene isolates from 11 Caribbean countries, along with sequences available on GenBank, we sought to document the population genetic and spatiotemporal transmission histories of the four main invading DENV genotypes within the Americas and investigate factors that influence the rate and intensity of DENV transmission. For all genotypes, there was an initial invasion phase characterized by rapid increases in genetic diversity, which coincided with the first confirmed cases of each genotype in the region. Rapid geographic dispersal occurred upon each genotype's introduction, after which individual lineages were locally maintained, and gene flow was primarily observed among neighboring and nearby countries. There were, however, centers of viral diversity (Barbados, Puerto Rico, Colombia, Suriname, Venezuela, and Brazil) that were repeatedly involved in gene flow with more distant locations. For DENV-1 and DENV-2, we found that a "distance-informed" model, which posits that the intensity of virus movement between locations is inversely proportional to the distance between them, provided a better fit than a model assuming equal rates of movement between all pairs of countries. However, for DENV-3 and DENV-4, the more stochastic "equal rates" model was preferred.  相似文献   

12.
Phylogeography and pleistocene evolution in the North American black bear   总被引:6,自引:1,他引:5  
To determine the extent of phylogeographic structuring in North American black bear (Ursus americanus) populations, we examined mitochondrial DNA sequences (n = 118) and restriction fragment length polymorphism profiles (n = 258) in individuals from 16 localities. Among the bears examined, 19 lineages falling into two highly divergent clades were identified. The clades differ at 5.0% of nucleotide positions, a distance consistent with an origin 1.8 MYA, and have different but overlapping geographical distributions. Areas of clade cooccurrence show that eastern and western populations are currently mixing, but regional differences in lineage distribution suggest that mixing has begun only recently. The long-term population history of black bears appears to be characterized predominantly by long-term regional isolation followed by recent contact and hybridization. Congruence between the pattern of diversity observed in black bears and patterns of forest refuge formation during the Pleistocene supports earlier speculation that Pleistocene forest fragmentations underlie a common pattern in the phylogeography of North American forest taxa.   相似文献   

13.
14.
A combination of allozyme and mitochondrial DNA markers were used to determine the contribution of recent and ancient causes of patterns of genetic variation within and among 46 populations of the endangered golden sun moth, Synemon plana. Allozyme analysis grouped the 46 populations into 5 major genetic clusters that corresponded closely with geographic location following a classic isolation-by-distance model. Phylogenetic analysis of 14 mtDNA haplotypes revealed two reciprocally monophyletic groups. One of these groups (containing 4 geographically distant populations) was clearly identified by allozyme analysis and represents a distinct evolutionary unit. The remaining 4 allozyme groups were not distinguishable by mtDNA analysis. The evidence suggests that the populations within these groups derived from a small founding population that underwent rapid demographic expansion in ancient times. This was followed by more recent population bottlenecks resulting from habitat fragmentation associated with the widespread introduction of agriculture into the region. The generally low levels of allozyme and nucleotide diversity within these populations support this hypothesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
1. Inbreeding and low genetic diversity can cause reductions in individual fitness and increase extinction risk in animal populations. Intentional introgression, achieved by releasing genetically diverse individuals into inbred populations, has been used as a conservation tool to improve demographic performance in endangered populations. 2. By the 1980s, Florida panthers (Puma concolor coryi) had been reduced to a small, inbred population that appeared to be on the brink of extinction. In 1995, female pumas from Texas (P. c. stanleyana) were released in occupied panther range as part of an intentional introgression programme to restore genetic variability and improve demographic performance of panthers. 3. We used 25 years (1981-2006) of continuous radiotelemetry and genetic data to estimate and model subadult and adult panther survival and cause-specific mortality to provide rigorous sex and age class-specific survival estimates and evaluate the effect of the introgression programme on these parameters. 4. Genetic ancestry influenced annual survival of subadults and adults after introgression, as F(1) generation admixed panthers ( = 0·98) survived better than pre-introgression type panthers ( = 0·77) and other admixed individuals ( = 0·82). Furthermore, heterozygosity was higher for admixed panthers relative to pre-introgression type panthers and positively influenced survival. 5. Our results are consistent with hybrid vigour; however, extrinsic factors such as low density of males in some areas of panther range may also have contributed to higher survival of F(1) panthers. Regardless, improved survival of F(1) subadults and adults likely contributed to the numerical increase in panthers following introgression, and our results indicate that intentional admixture, achieved here by releasing individuals from another population, appears to have been successful in improving demographic performance in this highly endangered population.  相似文献   

16.
The Neotropical otter (Lontra longicaudis) is a medium-sized semiaquatic carnivore with a broad distribution in the Neotropical region. Despite being apparently common in many areas, it is one of the least known otters, and genetic studies on this species are scarce. Here, we have investigated its genetic diversity, population structure, and demographic history across a large portion of its geographic range by analyzing 1471 base pairs (bp) of mitochondrial DNA from 52 individuals. Our results indicate that L. longicaudis presents high levels of genetic diversity and a consistent phylogeographic pattern, suggesting the existence of at least 4 distinct evolutionary lineages in South America. The observed phylogeographic partitions are partially congruent with the subspecies classification previously proposed for this species. Coalescence-based analyses indicate that Neotropical otter mitochondrial DNA lineages have shared a rather recent common ancestor, approximately 0.5 Ma, and have subsequently diversified into the observed phylogroups. A consistent scenario of recent population expansion was identified in Eastern South America based on several complementary analyses of historical demography. The results obtained here provide novel insights on the evolutionary history of this largely unknown Neotropical mustelid and should be useful to design conservation and management policies on behalf of this species and its habitats.  相似文献   

17.
The Andean degu, Octodontomys gliroides Gervais & d'Orbigny, 1844, has a broad distribution inhabiting pre‐Andean pre‐Puna and Puna environments of tropical South America. In order to understand the phylogeographic patterns of Octodontomys gliroides, we sequenced 579 bp of the mitochondrial DNA control region from 100 individuals collected from 20 populations across its entire distributional range. The phylogenetic and parsimony network, in conjunction with analysis of molecular variance (AMOVA), revealed a structured pattern of geographic differentiation of O. gliroides, with the occurrence of two well‐defined evolutionary lineages: lineage A, restricted to Bolivia and Chile, and lineage B, restricted mainly to Argentina. Analysis of population structure inferred three genetic clusters along the distribution of O. gliroides that mostly agree with the four major barriers inferred by BARRIER analysis (e.g. rivers, salt flats, deserts, and mountain systems). In addition to the significant differentiation found among all levels studied, a positive correlation was identified between genetic and geographic distance, similar to as expected under the isolation‐by‐distance model. The most recent common ancestor of O. gliroides was estimated as c. 5.99 Mya, and the divergence between lineages A and B is estimated to have occurred by the Middle Pleistocene, about 0.69 Mya. The mismatch distributions and neutrality tests suggested a signal of population range expansion for both lineages coincident with major climatic changes that occurred during the wet–dry events of the Pleistocene in the Andean Puna region. Bayesian skyline plots (BSPs) for lineage A suggest a long history of constant population size followed by a period of slight to moderate demographic expansion at c. 0.04 Mya, whereas lineage B remained unclear after BSP analysis, probably because of the limited sample size.  相似文献   

18.
Throughout the history of modern humans, the current Kurdish-inhabited area has served as part of a tricontinental crossroad for major human migrations. Also, a significant body of archaeological evidence points to this area as the site of Neolithic transition. To investigate the phylogeography, origins and demographic history, mtDNA D-loop region of individuals representing four Kurdish groups from Iran were analysed. Our data indicated that most of the Kurds mtDNA lineages belong to branches of the haplogroups with the Western Eurasian origin; with small fractions of the Eastern Eurasian and sub-Saharan African lineages. The low level of mtDNA diversity observed in the Havrami group presented a bias towards isolation or increased drift due to small population size; while in the Kurmanji group it indicated a bias towards drift or mass migration events during the 5–18th century AD. The Mantel test showed strong isolation by distance, and AMOVA results for global and regional scales confirmed that the geography had acted as the main driving force in shaping the current pattern of mtDNA diversity, rather than linguistic similarity. The results of demographic analyses, in agreement with archaeological data, revealed a recent expansion of the Kurds (~9,500 years before present) related to the Neolithic transition from hunting and gathering, to farming and cattle breeding in the Near East. Further, the high frequencies of typical haplogroups for early farmers (H; 37.1%) and hunter-gatherers (U; 13.8%) in the Kurds may testify the earlier hunter-gatherers in the Kurdish-inhabited area that adopted and admixed the Kurds ancestors following the Neolithic transition.  相似文献   

19.
The Finnish wolf population (Canis lupus) was sampled during three different periods (1996-1998, 1999-2001 and 2002-2004), and 118 individuals were genotyped with 10 microsatellite markers. Large genetic variation was found in the population despite a recent demographic bottleneck. No spatial population subdivision was found even though a significant negative relationship between genetic relatedness and geographic distance suggested isolation by distance. Very few individuals did not belong to the local wolf population as determined by assignment analyses, suggesting a low level of immigration in the population. We used the temporal approach and several statistical methods to estimate the variance effective size of the population. All methods gave similar estimates of effective population size, approximately 40 wolves. These estimates were slightly larger than the estimated census size of breeding individuals. A Bayesian model based on Markov chain Monte Carlo simulations indicated strong evidence for a long-term population decline. These results suggest that the contemporary wolf population size is roughly 8% of its historical size, and that the population decline dates back to late 19th century or early 20th century. Despite an increase of over 50% in the census size of the population during the whole study period, there was only weak evidence that the effective population size during the last period was higher than during the first. This may be caused by increased inbreeding, diminished dispersal within the population, and decreased immigration to the population during the last study period.  相似文献   

20.
We provide the first genetic analysis of the Bruneau Hot Springsnail (Pyrgulopsis bruneauensis), a federally listed (endangered) hydrobiid gastropod that is distributed in spring-fed habitats along a short reach of the Bruneau River in southwestern Idaho and threatened with extinction by groundwater withdrawal. Partial sequences of mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit I (NDI) were obtained from 51 specimens from six sites spanning the narrow geographic range of P. bruneauensis. A Bayesian analysis of the combined dataset resolved this species as a well supported clade which differed from other regional congeners by 4.66–10.62% sequence divergence (COI). The 11 observed COI haplotypes in P. bruneauensis formed two divergent (1.42 ± 0.7%) subgroups that co-occurred at five of the six collecting sites. COI haplotype diversity was substantial (ranging up to 0.9111) in all but one sample, while nucleotide diversity was low (<0.01). AMOVA detected small but significant variation among sites, although only one sample was significantly differentiated by pairwise comparisons. Haplotype composition varied widely among the collecting localities and no obvious geographic pattern was detected. These findings suggest that translocation of snails, which was considered as a possible measure in the P. bruneauensis recovery plan, should be preceded by assays to ensure selection of appropriately genetically diverse source populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号