首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lafora disease, a progressive myoclonus epilepsy, is an autosomal recessive disease caused in approximately 80% of cases by mutation of the EPM2A gene, which encodes a dual specificity protein phosphatase called laforin. In addition to its phosphatase domain, laforin contains an N-terminal carbohydrate-binding domain (CBD). Mouse laforin was expressed as an N-terminally polyHis tagged protein in Escherichia coli and purified close to homogeneity. The enzyme was active towards p-nitrophenylphosphate (50-80mmol/min/mg, K(m) 4.5mM) with maximal activity at pH 4.5. Laforin binds to glycogen, as previously shown, and caused potent inhibition, half maximally at approximately 1mug/ml. Less branched glucose polymers, amylopectin and amylose, were even more potent, with half maximal inhibition at 10 and 100ng/ml, respectively. With all polysaccharides, however, inhibition was incomplete and laforin retained 20-30% of its native activity at high polysaccharide concentrations. Glucose and short oligosaccharides did not affect activity. Substitution of Trp32 in the CBD by Gly, a mutation found in a patient, caused only a 30% decrease in laforin activity but abolished binding to and inhibition by glycogen, indicating that impaired glycogen binding is sufficient to cause Lafora disease.  相似文献   

2.
Lafora's disease (LD) is an autosomal recessive and fatal form of epilepsy with onset in late childhood or adolescence. One of the characteristic features of LD pathology is the presence of periodic acid-Schiff (PAS) positive Lafora inclusion bodies. Lafora bodies are present primarily in neurons, but they have also been found in other organs. Histochemical and biochemical studies have indicated that Lafora bodies are composed mainly of polysaccharides. The LD gene, EPM2A, encodes a 331 amino acid long protein named laforin that contains an N-terminal carbohydrate-binding domain (CBD) and a C-terminal dual-specificity phosphatase domain (DSPD). Here we demonstrate that the CBD of laforin targets the protein to Lafora inclusion bodies and this property could be evolutionarily conserved. We also tested in vitro the effects of five LD missense mutations on laforin's affinity to Lafora body. While the missense mutant W32G failed to bind to purified Lafora body, four other mutants (S25P, E28L, F88L, and R108C) did not show any effect on the binding affinity. Based on these observations we propose the existence of a laforin-mediated glycogen metabolic pathway regulating the disposal of pathogenic polyglucosan inclusions. This is the first report demonstrating a direct association between the LD gene product and the disease-defining storage product, the Lafora bodies.  相似文献   

3.
The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen.  相似文献   

4.
The aggregation of α-synuclein is linked directly to the histopathology of Parkinson’s disease (PD). However, several missense mutations present in the α-synuclein gene (SNCA) have been known to be associated with PD. Several studies have highlighted the effect of SNCA mutations on the α-synuclein aggregation, but their pathological roles are not completely established. In this study, we have focused on the effects of the recently discovered α-synuclein missense mutants (H50Q and G51D) on the aggregation using computational approaches. We performed all atom molecular dynamics (MD) simulation on these mutants and compared their conformational dynamics with Wild-Type (WT) α-synuclein. We noticed the solvent accessible surface area (SASA), radius of gyration, atomic fluctuations, and beta strand content to be higher in H50Q than G51D and WT. Using PDBSum online server; we analyzed the inter-molecular interactions that drive the association of monomeric units of H50Q, WT, and G51D in forming the respective homo-dimer. We noticed the interface area, number of interacting residues and binding free energy to be higher for H50Q homo-dimer than the WT and G51D homo-dimers. Our findings in this study suggest that in comparison to WT and G51D, H50Q mutation to have a positive effect on increasing the α-synuclein aggregation propensity. Hence, we see that H50Q and G51D mutation show conflicting effect on the aggregation propensity of α-synuclein.  相似文献   

5.
Glycogen storage disease type II is a lysosomal storage disorder due to mutations of the GAA gene, which causes lysosomal alpha-glucosidase deficiency. Clinically, glycogen storage disease type II has been classified in infantile and late-onset forms. Most late-onset patients share the leaky splicing mutation c.-32-13T>G. To date, the mechanism by which the c.-32-13T>G mutation affects the GAA mRNA splicing is not fully known. In this study, we demonstrate that the c.-32-13T>G mutation abrogates the binding of the splicing factor U2AF65 to the polypyrimidine tract of exon 2 and that several splicing factors affect exon 2 inclusion, although the only factor capable of acting in the c.-32-13 T>G context is the SR protein family member, SRSF4 (SRp75). Most importantly, a preliminary screening using small molecules described to be able to affect splicing profiles, showed that resveratrol treatment resulted in a significant increase of normal spliced GAA mRNA, GAA protein content and activity in cells transfected with a mutant minigene and in fibroblasts from patients carrying the c-32-13T>G mutation. In conclusion, this work provides an in-depth functional characterization of the c.-32-13T>G mutation and, most importantly, an in vitro proof of principle for the use of small molecules to rescue normal splicing of c.-32-13T>G mutant alleles.  相似文献   

6.
The three-dimensional crystal structures of the single mutant M17G and the triple mutant F14G-S15G-M17G of the response regulator protein CheY have been determined to 2.3 and 1.9 Å, respectively. Both mutants bind the essential Mg2+cation as determined by the changes in stability, but binding does not cause the intrinsic fluorescence quenching of W58 observed in the wild-type protein. The loop β4-α4 appears to be very flexible in both mutants and helix α4, which starts at N94 in the native Mg2+-CheY and at K91 in the native apo-CheY, starts in both mutants at residue K92. The side-chain of K109 appears to be more mobile because of the space freed by the M17G mutation. In the triple mutant the main chain of K109 and adjacent residues (loop β5-α5) is displaced almost by 2Å affecting the main chain at residues T87 to E89 (C terminus of β4). The triple mutant structure has a Mg2+bound at the active site, but although the Mg2+coordination is similar to that of the native Mg2+-CheY, the structural consequences of the metal binding are quite different. It seems that the mutations have disrupted the mechanism of movement transmission observed in the native protein. We suggest that the side-chain of K109, packed between V86, A88 and M17 in the native protein, slides forwards and backwards upon activation and deactivation dragging the main chain at the loop β5-α5 and triggering larger movements at the functional surface of the protein.  相似文献   

7.
Lamin A/C proteins are the major components of a thin proteinaceous filamentous meshwork, the lamina, that underlies the inner nuclear membrane. A few specific mutations in the lamin A/C gene cause a disease with remarkably different clinical features: FPLD, or familial partial lipodystrophy (Dunnigan-type), which mainly affects adipose tissue. Lamin A/C mutant R482W is the key variant that causes FPLD. Biomolecular interaction and molecular dynamics (MD) simulation analysis were performed to understand dynamic behavior of native and mutant structures at atomic level. Mutant lamin A/C (R482W) showed more interaction with its biological partners due to its expansion of interaction surface and flexible nature of binding residues than native lamin A/C. MD simulation clearly indicates that the flexibility of interacting residues of mutant are mainly due to less involvement in formation of inter and intramolecular hydrogen bonds. Our analysis of native and Mutant lamin A/C clearly shows that the structural and functional consequences of the mutation R482W causes FPLD. Because of the pivotal role of lamin A/C in maintaining dynamics of nuclear function, these differences likely contribute to or represent novel mechanisms in laminopathy development.  相似文献   

8.
In this work, we computationally identified the most detrimental missense mutations of KIT receptor causing gastrointestinal stromal tumors and analyzed the drug resistance of these missense mutations. Out of 31 missense mutations, 19 variants were commonly found less stable, deleterious and damaging by I-Mutant 2.0, SIFT and PolyPhen programs, respectively. Subsequently, we performed modeling of these 19 variants to understand their change in conformations with respect to native KIT receptor by computing their RMSD. Further, the native and 19 mutants were docked with the drug ‘Imatinib’ to explain the drug resistance of these detrimental missense mutations. Among the 19 mutants, we found by docking studies that 12 mutants, namely, F584C, F584L, V654A, L656P, T670I, R804W, D816F, D816V, D816Y, N822K, Y823D and E839K had less binding affinity with Imatinib than the native type. Finally, we analyzed that the loss of binding affinity of these 12 mutants, was due to altered flexibility in their binding amino acids with Imatinib as compared with native type by normal mode analysis. In our work, we found the novel data that the majority of the drug-binding amino acids in those 12 mutants had encountered loss of flexibility, which could be the theoretical basis for the cause of drug insensitivity.  相似文献   

9.
DNA gyrase is a validated target of fluoroquinolones which are key components of multidrug resistance tuberculosis (TB) treatment. Most frequent occurring mutations associated with high level of resistance to fluoroquinolone in clinical isolates of TB patients are A90V, D94G, and A90V–D94G (double mutant [DM]), present in the larger subunit of DNA Gyrase. In order to explicate the molecular mechanism of drug resistance corresponding to these mutations, molecular dynamics (MD) and mechanics approach was applied. Structure-based molecular docking of complex comprised of DNA bound with Gyrase A (large subunit) and Gyrase C (small subunit) with moxifloxacin (MFX) revealed high binding affinity to wild type with considerably high Glide XP docking score of ?7.88 kcal/mol. MFX affinity decreases toward single mutants and was minimum toward the DM with a docking score of ?3.82 kcal/mol. Docking studies were also performed against 8-Methyl-moxifloxacin which exhibited higher binding affinity against wild and mutants DNA gyrase when compared to MFX. Molecular Mechanics/Generalized Born Surface Area method predicted the binding free energy of the wild, A90V, D94G, and DM complexes to be ?55.81, ?25.87, ?20.45, and ?12.29 kcal/mol, respectively. These complexes were further subjected to 30 ns long MD simulations to examine significant interactions and conformational flexibilities in terms of root mean square deviation, root mean square fluctuation, and strength of hydrogen bond formed. This comparative drug interaction analysis provides systematic insights into the mechanism behind drug resistance and also paves way toward identifying potent lead compounds that could combat drug resistance of DNA gyrase due to mutations.  相似文献   

10.
Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both “loss as well as gain of function” mutations observed in this domain. Naturally occurring “gain of function” mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These “gain of function” mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the “gain of function” effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.  相似文献   

11.
G protein-coupled receptor (GPCR) activation mediated by ligand-induced structural reorganization of its helices is poorly understood. To determine the universal elements of this conformational switch, we used evolutionary tracing (ET) to identify residue positions commonly important in diverse GPCRs. When mapped onto the rhodopsin structure, these trace residues cluster into a network of contacts from the retinal binding site to the G protein-coupling loops. Their roles in a generic transduction mechanism were verified by 211 of 239 published mutations that caused functional defects. When grouped according to the nature of the defects, these residues sub-divided into three striking sub-clusters: a trigger region, where mutations mostly affect ligand binding, a coupling region near the cytoplasmic interface to the G protein, where mutations affect G protein activation, and a linking core in between where mutations cause constitutive activity and other defects. Differential ET analysis of the opsin family revealed an additional set of opsin-specific residues, several of which form part of the retinal binding pocket, and are known to cause functional defects upon mutation. To test the predictive power of ET, we introduced novel mutations in bovine rhodopsin at a globally important position, Leu-79, and at an opsin-specific position, Trp-175. Both were functionally critical, causing constitutive G protein activation of the mutants and rapid loss of regeneration after photobleaching. These results define in GPCRs a canonical signal transduction mechanism where ligand binding induces conformational changes propagated through adjacent trigger, linking core, and coupling regions.  相似文献   

12.
Xiang J  Jung JY  Sampson NS 《Biochemistry》2004,43(36):11436-11445
Many proteins utilize segmental motions to catalyze a specific reaction. The Omega loop of triosephosphate isomerase (TIM) is important for preventing the loss of the reactive enediol(ate) intermediate. The loop opens and closes even in the absence of the ligand, and the loop itself does not change conformation during movement. The conformational changes are localized to two hinges at the loop termini. Glycine is never observed in native TIM hinge sequences. In this paper, the hypothesis that limited access to conformational space is a requirement for protein hinges involved in catalysis was tested. The N-terminal hinge was mutated to P166/V167G/W168G (PGG), and the C-terminal hinge was mutated to K174G/T175G/A176G (GGG) in chicken TIM. The single-hinge mutants PGG and GGG had k(cat) values 200-fold lower than that of the wild type and K(m) values 10-fold higher. The k(cat) of double-hinge mutant P166/V167G/W168G/K174G/T175G/A176G was reduced 2500-fold; the K(m) was 10-fold higher. A combination of primary kinetic isotope effect measurements, isothermal calorimetric measurements, and (31)P NMR spectroscopic titration with the inhibitor 2-phosphoglycolate revealed that the mutants have a different ligand-binding mode than that of the wild-type enzyme. The predominant conformations of the mutants even in the presence of the inhibitor are loop-open conformations. In conclusion, mutation of the hinge residues to glycine resulted in the sampling of many more hinge conformations with the consequence that the population of the active-closed conformation is reduced. This reduced population results in a reduced catalytic activity.  相似文献   

13.
Lafora disease is an autosomal recessive form of progressive myoclonus epilepsy with no effective therapy. Although the outcome is always unfavorable, onset of symptoms and progression of the disease may vary. We aimed to identify modifier genes that may contribute to the clinical course of Lafora disease patients with EPM2A or EPM2B mutations. We established a list of 43 genes coding for proteins related to laforin/malin function and/or glycogen metabolism and tested common polymorphisms for possible associations with phenotypic differences using a collection of Lafora disease families. Genotype and haplotype analysis showed that PPP1R3C may be associated with a slow progression of the disease. The PPP1R3C gene encodes protein targeting to glycogen (PTG). Glycogen targeting subunits play a major role in recruiting type 1 protein phosphatase (PP1) to glycogen-enriched cell compartments and in increasing the specific activity of PP1 toward specific glycogenic substrates (glycogen synthase and glycogen phosphorylase). Here, we report a new mutation (c.746A>G, N249S) in the PPP1R3C gene that results in a decreased capacity to induce glycogen synthesis and a reduced interaction with glycogen phosphorylase and laforin, supporting a key role of this mutation in the glycogenic activity of PTG. This variant was found in one of two affected siblings of a Lafora disease family characterized by a remarkable mild course. Our findings suggest that variations in PTG may condition the course of Lafora disease and establish PTG as a potential target for pharmacogenetic and therapeutic approaches.  相似文献   

14.
Powl AM  East JM  Lee AG 《Biochemistry》2005,44(15):5873-5883
We have introduced single Trp residues into the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and used fluorescence quenching by brominated phospholipids to detect the presence of a binding site of high affinity for anionic phospholipids. A cluster of three positively charged residues, Arg-98, Lys-99, and Lys-100, is located on the cytoplasmic side of MscL, in a position where they could interact with the headgroup of an anionic phospholipid. Single mutations of these charged residues in the Trp-containing mutant F80W results in a decreased affinity for phosphatidic acid. Single mutations of the charged residues also result in a significant shift in the fluorescence emission spectrum in dioleoylphosphatidylcholine [di(C18:1)PC] but smaller shifts in dioleoylphosphatidic acid [di(C18:1)PA], suggesting that single mutations result in a conformational change for the protein that is reversed by interaction with anionic phospholipids. This is consistent with the observation that single mutations of the charged residues do not result in a gain of function phenotype. In contrast, simultaneous mutation of all three charged residues results in a gain of function phenotype, and a shift in fluorescence emission spectrum in di(C18:1)PC not reversed in di(C18:1)PA. The gain of function mutant F80W:V21K also shows a shifted fluorescence emission spectrum in both di(C18:1)PC and di(C18:1)PA and binds di(C18:1)PC and di(C18:1)PA with equal affinity, suggesting that the conformational change caused by the V21K mutation results in a breakup of the cluster of three positive charges. Experiments with the Trp mutants L69W and Y87W allow us to measure lipid binding constants on the periplasmic and cytoplasmic sides of the membrane, respectively. On both sides of the membrane the affinity for di(C18:1)PC is equal to that for dioleoylphosphatidylethanolamine. On the periplasmic side of the membrane, there is no selectivity for anionic phospholipids. In contrast, quenching data for Y87W provides evidence for the existence of two lipid binding sites on the cytoplasmic side of the membrane close to the Trp residue at position 87, with binding to one of these sites showing a marked preference for anionic lipid over zwitterionic lipid, presumably involving the charged cluster Arg-98, Lys-99, and Lys-100.  相似文献   

15.
Point mutations of the active-site residues Trp168, Tyr171, Trp275, Trp397, Trp570 and Asp392 were introduced to Vibrio carchariae chitinase A. The modeled 3D structure of the enzyme illustrated that these residues fully occupied the substrate binding cleft and it was found that their mutation greatly reduced the hydrolyzing activity against pNP-[GlcNAc](2) and colloidal chitin. Mutant W397F was the only exception, as it instead enhanced the hydrolysis of the pNP substrate to 142% and gave no activity loss towards colloidal chitin. The kinetic study with the pNP substrate demonstrated that the mutations caused impaired K(m) and k(cat) values of the enzyme. A chitin binding assay showed that mutations of the aromatic residues did not change the binding equilibrium. Product analysis by thin layer chromatography showed higher efficiency of W275G and W397F in G4-G6 hydrolysis over the wild type enzyme. Though the time course of colloidal chitin hydrolysis displayed no difference in the cleavage behavior of the chitinase variants, the time course of G6 hydrolysis exhibited distinct hydrolytic patterns between wild-type and mutants W275G and W397F. Wild type initially hydrolyzed G6 to G4 and G2, and finally G2 was formed as the major end product. W275G primarily created G2-G5 intermediates, and later G2 and G3 were formed as stable products. In contrast, W397F initially produced G1-G5, and then the high-M(r) intermediates (G3-G5) were broken down to G1 and G2 end products. This modification of the cleavage patterns of chitooligomers suggested that residues Trp275 and Trp397 are involved in defining the binding selectivity of the enzyme to soluble substrates.  相似文献   

16.
R67 dihydrofolate reductase (R67 DHFR) is a novel protein encoded by an R-plasmid that confers resistance to the antibiotic, trimethoprim. This homotetrameric enzyme possesses 222 symmetry, which imposes numerous constraints on the single active site pore, including a "one-site-fits-both" strategy for binding its ligands, dihydrofolate (DHF) and NADPH. Previous studies uncovered salt effects on binding and catalysis (Hicks, S. N., Smiley, R. D., Hamilton, J. B., and Howell, E. E. (2003) Biochemistry 42, 10569-10578), however the one or more residues that participate in ionic contacts with the negatively charged tail of DHF as well as the phosphate groups in NADPH were not identified. Several studies predict that Lys-32 residues were involved, however mutations at this residue destabilize the R67 DHFR homotetramer. To study the role of Lys-32 in binding and catalysis, asymmetric K32M mutations have been utilized. To create asymmetry, individual mutations were added to a tandem array of four in-frame gene copies. These studies show one K32M mutation is tolerated quite well, whereas addition of two mutations has variable effects. Two double mutants, K32M:1+2 and K32M: 1+4, which place the mutations on opposite sides of the pore, reduce kcat. However a third double mutant, K32M: 1+3, that places two mutations on the same half pore, enhances kcat 4- to 5-fold compared with the parent enzyme, albeit at the expense of weaker binding of ligands. Because the kcat/Km values for this double mutant series are similar, these mutations appear to have uncovered some degree of non-productive binding. This non-productive binding mode likely arises from formation of an ionic interaction that must be broken to allow access to the transition state. The K32M:1+3 mutant data suggest this interaction is an ionic interaction between Lys-32 and the charged tail of dihydrofolate. This unusual catalytic scenario arises from the 222 symmetry imposed on the single active site pore.  相似文献   

17.
Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease.  相似文献   

18.
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k(cat)/K(M) higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k(cat)/K(M) of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.  相似文献   

19.
To define a region(s) in human immunodeficiency virus type 1 (HIV-1) Vif that involves binding to its target APOBEC3G (A3G), we have generated a series of site-specific proviral vif mutants. Of 30 mutants examined, 15 did not grow at all or grew more poorly than wild-type virus in non-permissive cells. Eight clones with N-terminal mutations located outside of the HCCH motif and BC-box, which are known to be directly crucial for the degradation of A3G, were chosen from these growth-defective mutants and mainly analyzed in detail for functional activity of their mutant Vif proteins. By single-cycle replication and immunoprecipitation/immunoblotting analyses, mutants designated W21A, S32A, W38A, Y40A, and H43A were demonstrated to hardly or poorly bind to and neutralize A3G. Upon transfection, these mutants produced progeny virions containing much more A3G than wild-type clone. Interestingly, while mutants designated E76A and W79A acted normally to inactivate A3G, they were found to exhibit a Vif-defective phenotype against A3F. Another unique mutant designated Y69A incompetent against both of A3G/F was also identified. Our results here have indicated that at least two distinct regions in the N-terminal half of HIV-1 Vif are critical for binding and exclusion of A3G/F.  相似文献   

20.
Lafora disease (LD) is an autosomal recessive neurodegenerative disease that results in progressive myoclonus epilepsy and death. LD is caused by mutations in either the E3 ubiquitin ligase malin or the dual specificity phosphatase laforin. A hallmark of LD is the accumulation of insoluble glycogen in the cytoplasm of cells from most tissues. Glycogen metabolism is regulated by phosphorylation of key metabolic enzymes. One regulator of this phosphorylation is protein targeting to glycogen (PTG/R5), a scaffold protein that binds both glycogen and many of the enzymes involved in glycogen synthesis, including protein phosphatase 1 (PP1), glycogen synthase, phosphorylase, and laforin. Overexpression of PTG markedly increases glycogen accumulation, and decreased PTG expression decreases glycogen stores. To investigate if malin and laforin play a role in glycogen metabolism, we overexpressed PTG, malin, and laforin in tissue culture cells. We found that expression of malin or laforin decreased PTG-stimulated glycogen accumulation by 25%, and co-expression of malin and laforin abolished PTG-stimulated glycogen accumulation. Consistent with this result, we found that malin ubiquitinates PTG in a laforin-dependent manner, both in vivo and in vitro, and targets PTG for proteasome-dependent degradation. These results suggest an additional mechanism, involving laforin and malin, in regulating glycogen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号