首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

2.
Assessing patterns of genetic variation in rare endangered species is critical for developing both in situ and ex situ conservation strategies. Pinus dabeshanensis Cheng et Law is an endangered species endemic to the Dabieshan Mountains of eastern China. To obtain fundamental information of genetic diversity, population history, effective population size, and gene flow in this species, we explored patterns of genetic variation of natural populations, in addition to an ex situ conserved population, using expressed sequence tag-simple sequence repeats (EST-SSR) markers. Our results revealed moderate levels of genetic diversity (e.g., HE = 0.458 vs. HE = 0.423) and a low level of genetic differentiation (FST = 0.028) among natural and conserved populations relative to other conifers. Both contemporary and historical migration rates among populations were high. Bayesian coalescent-based analyses suggested that 3 populations underwent reductions in population size ca. 10,000 yr ago, and that two populations may have experienced recent genetic bottlenecks under the TPM. Bayesian clustering revealed that individuals from the ex situ population were largely assigned to the ‘red’ cluster. Additionally, our results identified private alleles in the natural populations but not in the ex situ population, suggesting that the ex situ conserved population insufficiently represents the genetic diversity present in the species. Past decline in population size is likely to be due to Holocene climate change. Based on the genetic information obtained for P. dabeshanensis, we propose some suggestions for the conservation and efficient management of this endangered species.  相似文献   

3.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

4.
Twenty-eight populations of the rare medicinal plant Magnolia officinalis (Magnoliaceae) were sampled across its natural range, and inter-simple sequence repeats (ISSRs) markers were used to assess the genetic variation within and among populations. Twelve primer combinations produced a total of 137 unambiguous bands of which 114 (83.2%) were polymorphic. M. officinalis exhibited a relatively low genetic diversity at population level (the percentage of polymorphic loci PPB = 49.8%, Nei’s genetic diversity H = 0.194, Shannon’s information index I = 0.286). However, the genetic diversity at species level was relatively high (PPB = 83.2%; H = 0.342; I = 0.496). The coefficient of gene differentiation (GST, 42.8%) and the results of analysis of molecular variance (AMVOA) indicated that genetic differentiation occurred mainly within populations. The estimated gene flow (Nm) from GST was 0.669. It indicated that the fragmentation and isolation of populations might result from specific evolutionary history and anthropogenic activity. Genetic drift played a more important role than gene flow in the current population genetic structure of Mofficinalis. Conservation strategies for this rare species are proposed based on the genetic data.  相似文献   

5.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

6.
Many taxonomic groups contain both rare and widespread species, which indicates that range size can evolve quickly. Many studies have compared molecular genetic diversity, plasticity, or phenotypic traits between rare and widespread species; however, a suite of genetic attributes that unites rare species remains elusive. Here, using two rare and two widespread Boechera (Brassicaceae) species, we conduct a simultaneous comparison of quantitative trait diversity, genetic diversity, and population structure among species with highly divergent range sizes. Consistent with previous studies, we do not find strong associations between range size and within‐population genetic diversity. In contrast, we find that both the degree of phenotypic plasticity and quantitative trait structure (QST) were positively correlated with range size. We also found higher FST: QST ratios in rare species, indicative of either a greater response to stabilizing selection or a lack of additive genetic variation. While widespread species occupy more ecological and climactic space and have diverged at both traits and markers, rare species display constrained levels of population differentiation and phenotypic plasticity. Combined, our results provide evidence for a specialization–generalization trade‐off across three orders of magnitude of range size variation in the ecological model genus, Boechera.  相似文献   

7.
Allozyme variation was investigated in two local populations of Bulbophyllum drymoglossum and three populations Sarcanthus scolopendrifolius, two rare and endangered lithophytes and epiphytes from South Korea. Genetic diversity was extremely low within populations (mean H e = 0.011 for B. drymoglossum; 0.002 for S. scolopendrifolius). Among the putative screened 21 loci, we found only one polymorphic locus for each species. Only one polymorphic locus, detected just one population of each species, revealed significantly high degree of population differentiation between and among populations (F ST = 0.253 for B. drymoglossum and F ST = 0.899 for S. scolopendrifolius). These results suggest that genetic drift (consequence of a very small effective population size), coupled with a limited gene flow would play a major role in shaping population genetics of these species in South Korea. The current status of both species (small population sizes, spatially isolated populations, and highly localized habitats) in addition to the extremely low levels of genetic diversity and reckless collection of endangered orchids by plant sellers, significantly threaten the long-term survival of these species in Korea. Conservation of the two species requires both in situ strategies, by introducing of genets to increase effective population sizes by minimizing adverse effects (e.g., outbreeding depression and genetic swamping by non-native genotypes), and ex situ strategies, such as collection of genets from clonal ramets.  相似文献   

8.
Wild cherry (Prunus avium L.) is a widespread, partially asexual, noble hardwood European species characterized by a scattered distribution, small population sizes, and human exploitation for its valuable wood. These characteristics, especially at the southern limits of the species natural distribution where additional varying stresses may occur, render P. avium populations prone to potential stochastic, genetic, and demographic events. In this study, we used dominant inter simple sequence repeat (ISSR) and codominant simple sequence repeat (SSR) markers to infer the genetic structure of P. avium. Five populations from northern Greece were evaluated based on 46 ISSR and 11 SSR loci. Populations presented a relatively high level of genetic variation, with a mean genetic diversity of H e?=?0.166 and H e?=?0.740 regarding ISSR and SSR analysis, respectively. We observed moderate population differentiation for ISSR (G ST?=?0.113) and SSR (F ST?=?0.097) markers. AMOVA also detected significant differentiation among populations for ISSRs (?? ST?=?0.338) and SRRs (?? ST?=?0.162). According to linkage disequilibrium analysis, estimates of effective population size were generally sufficient for maintaining extant genetic variability and evolutionary potential. A possible bottleneck was detected for only one population. In general, it appears that despite the particular characteristics of the P. avium populations studied, genetic stochasticity events were not apparent. The studied populations, located at the rear edge of the species European distribution, reveal a wealth of genetic variation that is very valuable for the genetic conservation of local adaptive gene complexes, especially under contemporary climatic change scenarios.  相似文献   

9.
Inter-simple sequence repeats (ISSR) markers were used to assess the genetic diversity and population structure in five populations of Astragalus nitidiflorus, a critically endangered species endemic to southeast Spain. Eight primers amplified 78 bands with 40 (51.3%) being polymorphic. Statistical results indicated a low genetic diversity at the population and species level, with percentages of polymorphic bands (PPB) ranging from 28.2 to 37.2% (an average of 31.8%), and means of gene diversity (HE) of 0.129 and 0.171 respectively. The Shannon’s index (SI) ranged from 0.160 to 0.214 at the population level and was 0.260 at the species level. A low level of genetic differentiation among populations was detected, based on the Shannon’s information index (0.297), the coefficient of genetic differentiation between populations (GST = 0.2418) and AMOVA analysis (ΦST = 0.255). The estimated gene flow (Nm) was 0.789. The high genetic connectivity found among populations of A. nitidiflorus is an evidence of a recent habitat fragmentation. In addition, a bottleneck event in the past has been revealed, with a subsequent reduction of population size and a loss of genetic variation. Based on these results, the conservation strategy of A. nitidiflorus was proposed.  相似文献   

10.
Genetic structure of natural populations of the rare relict plant Manchurian birthwort (Aristolochia manshuriensis Kom.) in the Russian part of its area was analyzed using allozyme markers. The studied A. manshuriensis populations differed in the degree of their intrapopulation differentiation. The populations Nezhinka and Anan’evka were more differentiated (F ST = 0.1209 and 0.0576, respectively); these populations are located close in the regions of intense economic activity and are exposed to the strongest anthropogenic impact. A low degree of differentiation was detected in the population Malaya Borisovka (F ST = 0.0393), localized to intact habitats. The overall heterogeneity test has demonstrated that the population Malaya Anan’evka, exposed at present to small anthropogenic stress yet growing in disturbed habitats, displays no differentiation. These results suggest that at least three populations are influenced by genetic drift connected with a decrease in the reproductive and effective population sizes, which is caused, in particular, by anthropogenic impact. A high level of genetic similarity between the A. manshuriensis populations in Primor’e is discussed in connection with the evolutionary history of this species.  相似文献   

11.
We studied the population genetic and clonal structure of the endangered long-lived perennial plant Narcissus pseudonarcissus using random amplified polymorphic markers. Estimates for mean gene diversity within 15 populations of N. pseudonarcissus of three neighbouring geographical regions were high in comparison to other long-lived perennials (H eN = 0.33). The genetic diversity of the two smallest populations (<200 plants) was significantly reduced, indicating loss of genetic variability due to drift. The analysis of the population genetic structure revealed a significant genetic differentiation both between regions (ΦST = 0.06) and between populations within regions (ΦST = 0.20). However, there was incomplete correspondence between geographical regions and the population genetic structure. In order to preserve the overall genetic variation in wild populations of N. pseudonarcissus, management measures should thus aim to protect many populations in each region. The spatial genetic structure within populations of N. pseudonarcissus was in agreement with an isolation by distance model indicating limited gene flow due to pollinator behaviour and restricted seed dispersal. The very restricted spatial extent of clonal growth (<5 cm) and the high level of clonal diversity indicate that clonal growth in N. pseudonarcissus is not an important mode of propagation and that management measures should favour sexual reproduction in order to avoid further reductions in the size and number of populations.  相似文献   

12.
Studies over the last two decades demonstrate that hybridization has played an integral role in the evolution of several sections of the genus Centaurea. Nevertheless, natural hybridization between narrow Mediterranean endemic Centaurea species has not been documented as yet. A population of fertile Centaurea individuals exhibiting intermediate morphological traits between two Sardinian narrow endemics, C. horrida and C. filiformis, was identified at the Tavolara Islet (Sardinia, Italy). Intermediate leaf length and head width characterized this population, suggesting its hybrid origin. The putative hybrid population was structured (i.e., composed of seedlings, saplings and adult individuals) and had a relatively high levels of seed production. The number of chromosomes was identical to that of the proposed progenitors (2n?=?18). Genotyping at five microsatellite loci showed that the putative hybrid possessed several alleles in common with the proposed parental species and intermediate values of genetic differentiation, as indicated by both F ST and R ST, between C. horrida and C. filiformis. We therefore conclude that the studied intermediate population is of hybrid origin, and discuss possible mechanisms of its reproductive isolation from the parental species, potential re-introgression, and evolutionary implications of this hybridization.  相似文献   

13.
Ranunculus cabrerensis is an endemic and endangered species of the Northwestern Iberian Peninsula. The molecular markers AFLP and ISSR were used to investigate the genetic diversity and population structure of four populations across its known distribution. Fifteen selective primer combinations of AFLP and seventeen ISSR primer combinations produced a total of 2830 and 103 unambiguously repeatable fragments respectively, of which 97.57 and 81.38% were polymorphic for both markers. The genetic diversity of R. cabrerensis at species level was high (H E = 0.294 by ISSR and H E = 0.191 by AFLP) and differentiation between sampled locations was also relatively high (G ST = 0.316 and 0.158 by ISSR and AFLP analysis respectively) compared to other studies of endangered and rare species using the same techniques. The analysis of molecular variance (AMOVA) indicated that the main genetic variation was within sampled locations (73% by AFLP; 52% by ISSR), even though the variation among locations was also significant. Principal Coordinates, NeighborNet and Bayesian analyses revealed a weak but significant relationship between the genetic structures of different populations in R. cabrerensis, with gene flow acting as a homogenizing force that prevents stronger differentiation of populations. Finally, suggestions for conservation strategies to preserve the genetic resources of this species are outlined.  相似文献   

14.
Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = ?0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.  相似文献   

15.
The Wattled Curassow (Crax globulosa, Cracidae, Aves) is a large bird living in the Western Amazon basin and a critically endangered species in the Colombian and in the Peruvian Amazon. We carried out the first population genetics analysis of this species employing six nuclear microsatellite markers and sequences of the mtND2 gene. The main results are as follows. (1) The levels of gene diversity were high for the overall population as well as for each of the three islands for both microsatellites and mtDNA. (2) A small amount of genetic differentiation among populations was found with both types of markers (FST = 0.027 for microsatellites and NST = 0.17 for mitochondrial sequences). (3) Using microsatellites, the Geneclass 2.0 software detected a low correct assignment of individuals to their respective populations. The Structure software only detected one gene pool for the entire area studied. These results are relevant for conservation efforts of this critically endangered species.  相似文献   

16.
To ascertain the conservation priorities and strategies for Commiphora wightii, an endangered medicinal plant of Indian Thar Desert, genetic diversity was estimated within and among different populations. The total of 155 amplification products were scored using ten each of RAPD and ISSR primers, exhibiting an overall 86.72% polymorphism across 45 individuals representing eight populations. The cumulative data of two markers were used to compute pair-wise distances. The Neighbor-Joining tree revealed high genetic differentiation among populations except Kiradu population. Nei's gene diversity (h) ranged between 0.082 and 0.193 with total diversity at species level is 0.294. Shannon's information index (I) ranged between 0.118 and 0.275 with an overall diversity of 0.439. Analysis of molecular variance showed more diversity among population level (56.65%) than at within population level (43.35%). The low gene flow value (Nm = 0.349) and high coefficient of genetic differentiation (GST = 0.589) and high fixation index (FST = 0.566) demonstrated elevated genetic differentiation among the population and can be predicted that these populations are not in Hardy–Weinberg proportions. Principal Co-ordinate Analysis confirms that Akal population has become phylogenetically more distinct and less diverse than the rest of the samples. Mantel's test revealed no correlation between genetic and geographical distances of populations (R2 = 0.122). Overall highest diversity was observed in the population of Machiya Safari Park and Kiradu, while lowest in Akal population, later may constitute an evolutionary significant unit, having merit for special management.  相似文献   

17.
Morphological, phytochemical and genetic differences were studied to evaluate the level and distribution of diversity in twelve populations of the Portuguese endangered medicinal plant Mentha cervina L. Morphological variation was correlated with ecological conditions at the site of origin. Pulegone was the major essential oils compound in all of the populations collected at full flowering (68–83%), in different growing conditions (51–82%), and for all the developmental stages studied (47–82%). Although clusters were defined, the analysis revealed a high chemical correlation among all populations (Scorr ≥ 0.95%). Inter-simple sequence repeats markers were used to assess the population structure and genetic variation. Populations exhibited a relatively low genetic diversity (PPB = 14.3–64.6%, He = 0.051–0.222, I = 0.076–0.332), with high structuring between them (GST = 0.51). However, the genetic diversity at species level was relatively high (PPB = 97.7%; He = 0.320). The levels and patterns of genetic diversity were assumed to result largely from a combination of evolutionary history and its unique biological traits, such as breeding system, clonal growth, low capacity of dispersion and habitat fragmentation. The relatively low genetic diversity in the populations analyzed indicates that the maintenance of their evolutionary potential is at risk if population sizes are maintained and if there is no protection of the habitats.  相似文献   

18.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

19.
Ceratopteris pteridoides (Hook.) Hieron. is an endangered aquatic homosporous fern in China. Genetic diversity and structure of eight populations collected from the mid-lower reaches of Yangtze River were investigated using amplified fragment length polymorphisms (AFLPs). A low level of gene diversity was found at the population level (Pp = 17.4%, HE = 0.039 and I = 0.063), which possibly resulted from its high degree of inbreeding, clonal growth and short life history of this species. C. pteridoides contained high clonal diversity (PD = 0.757, D = 0.992). High population differentiation was revealed by partitioning of genetic diversity (GST = 0.707), and the AMOVA analysis consistently showed that 72.3% of the total genetic diversity was attributable to among-population diversity. Based on the genetic information from UPGMA cluster and principal coordinate analysis, two management units have been identified, and translocation within each management unit is recommended.  相似文献   

20.
We assessed the genetic structure and diversity of Reithrodontomys spectabilis, a critically endangered, endemic rodent from Cozumel Island, México. A total of 90 individuals were trapped from September 2001 to January 2005. Microsatellite data analysis revealed high genetic diversity values: a total of 113 alleles (average 12.5 per locus), H o  = 0.78, H e  = 0.80. These high values can be related to Cozumel’s size (478 km2) and extensive native vegetation cover, factors that could be promoting a suitable population size, high heterozygosity and the persistence of rare alleles in the species, as well as some long-term movement of individuals between sampling localities. A strong genetic structure was also observed, with at least four genetic groups, associated with a pattern of isolation by distance. We found a strong allelic and genetic differentiation shown between localities, with negligible recent gene flow and low inbreeding coefficients. The species life history and ecological characteristics—being nocturnal, semi-terrestrial, a good tree climber, having lunar phobia and significant edge effect—are likely affecting its genetic structure and differentiation. The high genetic diversity and population structure award R. spectabilis a significant conservation value. Our results can serve as a basis for future research and conservation of the species, particularly considering the problems the island is facing from habitat perturbation, urbanization and introduction of exotic species. In view of the structure and genetic variability observed, it is essential to establish and reinforce protected areas and management programs for the conservation of the endemic and endangered Cozumel Harvest mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号